The culture of seabass

By ET Aldon PHOTOS R Buendia

Seabass are raised in ponds and cages in Southeast Asia. The development of artificial propagation and hatchery techniques contributed to the large-scale development of seabass culture. The report of Baldia and Vasudevan in 1996 showed that culture of this high-value species gave a 74% return-on-investment and 1.4 years payback period for hatchery and cage grow-out.

Seabass culture is done in two phases: nursery and grow-out.

POND NURSERY

Kungvankij recommends pond size ranging from 500 to 2000 m² with water depth of 50-80 cm. Ponds must have separate inlet and outlet gates for water exchange and a flat bottom that slopes towards the drainage gate. A 1-mm size screen net is installed in gates to prevent predators and competitors from getting into the pond.

Stocking density in pond nursery is 20-50 fry per m² for fry size of 1.0-2.5 cm.

Standard pond preparation and management techniques are followed. Fry are acclimatized to pond salinity and temperature before these are stocked in early morning or early evening.

NURSERY

Seabass fry are raised in the nursery (1.0-2.5 cm until 8-10 cm) in either ponds or cages. This minimizes competition for space and food, thus controlling cannibalism. The use of tanks, though common, is not recommended because excess feeds can accumulate on the bottom and bacterial disease can become a problem. But this problem can be minimized with proper and frequent water change. Handling of stock during sorting is easier done in tanks than in ponds or cages.

If stocked directly in grow-out ponds, seabass may be difficult to size-grade. Regular sorting of fry is best done during the nursery phase.

About 30% of water is changed daily to prevent deterioration of water due to uneaten food or excess growth of natural food.

CAGE NURSERY

The rectangular net cage attached to wooden frames is either kept afloat by styrofoam, plastic or metal drum, or fastened (stationary) to a bamboo or wooden pole at each cor-
grow-out ponds and cages. Parazo (1991) suggested that stocking density be regulated to minimize cannibalism. This is supported by Victor Billanes of Capiz Institute of Technology who claimed that he did not encounter cannibalism in his stock of 400 seabass in the school’s experimental pond (1,000 m²). He said he feeds the seabass twice a day with trash fish. AQD researcher Fermin, however, reported that occurrence of shooters is neither a result of the differences in stocking density nor the lack of supplemental feeds.

GROW-OUT

The grow-out phase involves rearing seabass from juvenile to marketable size (300-400 g). Culture period varies from 3-4 months.
There are two culture systems employed in pond culture of seabass. *Monoculture* is a culture system where a single species of fish is produced. *Polyculture* is the system where two or more fish species are produced. Forage fish like tilapia are combined with the main species - like seabass - in the pond. They feed on natural food and will not compete with the main species for food. Forage fish should also continuously and sufficiently sustain the growth of seabass throughout the culture period.

Kungvankij recommends that seabass ponds, whether for mono- or polyculture, be situated in suitable sites. The parameters normally considered as suitable water supply are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.5-8.5</td>
</tr>
<tr>
<td>dissolved oxygen</td>
<td>4-9 ppm</td>
</tr>
<tr>
<td>salinity</td>
<td>10-30 ppt</td>
</tr>
<tr>
<td>temperature</td>
<td>26-32°C</td>
</tr>
<tr>
<td>NH₃ (ammonia)</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>H₂S (hydrogen sulfide)</td>
<td>< 0.3 ppm</td>
</tr>
<tr>
<td>turbidity</td>
<td>< 10 ppm</td>
</tr>
</tbody>
</table>

Seabass farms should also have moderate tide fluctuation of 2-3 meters for complete draining during low tide and tidal entry during spring tide. The soil should have enough clay content to hold water. Acid sulphate soil should be avoided.

Other considerations are accessibility of site to transportation and communication, availability of seed, labor, technical assistance, market demand and social condition.

Seabass ponds are generally rectangular with size ranging from 2,000 m² to 2 ha and depth of 1.2-1.5 m. Pond bottom is entirely flat but slopes toward the drainage gate.

Pond preparation is similar to other monoculture systems. In polyculture system, however, organic fertilizer (chicken manure) is applied at the rate of 1 ton per ha alter the pond acidity is neutralized. Then water depth is gradually increased to grow natural food.

Seabass juveniles (8-10 cm) from the nursery are stocked in grow-out ponds at a rate of 10,000-20,000 per ha in monoculture and 3,000-5,000 per ha in polyculture. Prior to stocking, juveniles are acclimatized to pond water temperature and salinity. Stocking in uniform sizes is done at cooler times of the day.

In monoculture (where supplementary feed is given daily and excess feeds may pollute the water), daily water replenishment is necessary. In polyculture, a 50% water replenishment can be done once in three days; this is enough to maintain natural food in ponds.

In monoculture, the same feeding regime as in floating cage is applied. In polyculture, supplementary feeding is not required as the seabass feed on forage fish in the pond. Polyculture can hence reduce the farmers’ dependence on trashfish. Several reports suggest the viability of seabass polyculture with other species.

Seabass with milkfish and tilapia
Jessie Banno (1984) studied the culture of seabass combined with milkfish and tilapia in brackishwater ponds. He noted the best stocking density as follows: 5,000 seabass + 1,500 milkfish + 4,000 tilapia per ha. The size range for sea bass should be uniform: 10-20 g, 20-30g, or 30-50 g. Banno noted that culture should not be more than three months because growth rates of milkfish and seabass are affected adversely by wild tilapia spawnings.

Seabass with groupers
Alcantara et al. (1995) reared seabass with the groupers *Cromileptis* and *Epinephelus* in 2.5 x 2.5 x 1.5 m cage for five months at Tiniguiban Cove, Pto. Princesa, Palawan. Trashfish required during culture was supplied by the catch of the lift net installed at one side of the cage. The lift net is operated twice daily. Trashfish were given twice daily chopped or whole depending on size. The growth of seabass is faster (4.0 g per day) than *Epinephelus* (2.3 g per day) or *Cromileptis* (1.59 g per day). Seabass fry were
first reared in nursery ponds and grown as juveniles before
stocking in cages.

Seabass with seaweed
AQD scientist Anicia Hurtado-Ponce noted the possibility
of seaweed — *Kappaphycus alvarezii* var. *tambalang* —
polyculture with carnivorous fishes or molluscs in cages.

Seabass are fed trashfish twice a day. A 1 kg seabass
can be harvested after 8 months of culture. Pudadera har-
vests seabass according to the size and volume requirement
of his clients. The farm supplies restaurants in Iloilo City
with live seabass.

Individual cuttings of seaweed (150-200 g wet weight)
were tied to a 3-m nylon monofilament cord and to two
ends of a bamboo frame (3 × 3 m). The bamboo frame was
installed inside a 4 × 4 m floating cage of seabass
broodstock. Seabass-seaweed culture can make better use
of marine resources, reduce impact of intensive
aquaculture, minimize grazing and maximize production.

Seabass with tilapia
Dr. Romeo Fortes and Jerome Genodepa of the University
of the Philippines - Visayas studied the potential of seabass
as predator on young tilapia and determined the most ef-
fective seabass- tilapia combination. A 1:5 seabass-tilapia
ratio is suggested. Tilapia are first allowed to grow in the
ponds before seabass are stocked.

Seabass with snapper, grouper, shrimp
Florito Pudadera, a farm technician in the Robles Farm in
Oton, Iloilo, reported a 90% survival of seabass cultured
with red snapper, grouper and tiger shrimp in brackishwater
ponds. (Pudadera stocks 500 seabass + 2,000 grouper +
500 red snapper + 600 shrimp in a 0.5 ha pond.) Wild fry
are first stocked in tanks and fed with copepods. Survival
rate in tanks is about 50%. The fry are next transferred to
• hapa netcages (survival is 75%) then to grow-out ponds
when they are around 12 cm in length.

Seabass with seaweed
Grouper and tiger shrimp, both high-value species, may be cultured with
seabass.

REFERENCES
Alcantara L, C Dumadaug, R Dolorosa and R Roche. 1995. The growth
of *Lates calcarifer* (Bloch), *Cromileptis altivelis* (Valenciennes)
and *Epinephelus* sp. in cage fed on-farm caught trash fish. Proc.
(Bloch) in combination with different stocking densities of
milkfish, *Chanos chanos* (Forsskal) and tilapia (*Oreochromis*
mosambica Peters) in brackishwater ponds. SEAFDEC Leganes
Projects.
dela Peña M, AC Fermin, and DP Lojera. (in press). Partial replacement
of *Artemia* sp. by brackishwater cladoceran, *Diaphanosoma*
celebensis (Stingelin) in the hatchery rearing of sea bass *Lates*
calcarifer* (Bloch). Israeli Journal of Aquaculture - Bamidgeh
Fermin AC. 1991. Freshwater cladoceran *Moina macrocopa* (Strauss) as
an alternative live food for rearing sea bass *Lates calcarifer*
(Bloch) fry. J. Appl. Ichthyol. 7: 8-14
Genodepa J. 1989. Sea bass *Lates calcarifer* research at the freshwater
aquaculture center, Philippines. Management of Wild and Culture
Sea bass/barramundi *Lates calcarifer*. ACIAR Proceedings No. 20
Hurtado-Ponce AQ. 1992. Cage culture of *Kappaphycus alvarezii* var.
311-313
Biology and culture of seabass. SEAFDEC AQD Extension
Manual No. 11
Parazo M, EM Avila and DM Reyes Jr. 1991. Size-and weight-
dependent cannibalism in hatchery-bred sea bass (*Lates calcarifer*
Parazo M, EM Avila and DM Reyes Jr. 1991. Size-and weight-
dependent cannibalism in hatchery-bred sea bass (*Lates calcarifer*