Farming the giant clam

Surtida, Marilyn B. & Buendia, Romeo Y.

Date published: 2000

Keywords: Marine environment, Clam culture, Depleted stocks, Growth rate, Marine aquaculture, Marketing, Rare species, Resource conservation, Resource management, Sexual reproduction, Stocking (organisms), Stocking density, Survival, Hippopus hippopus, Hippopus porcellanus, Tridacna croces, Tridacna derasa, Tridacna gigas, Tridacna maxima, Tridacna squamosa, Philippines

To link to this document: http://hdl.handle.net/10862/2736

Share on:

PLEASE SCROLL DOWN TO SEE THE FULL TEXT

This content was downloaded from SEAFDEC/AQD Institutional Repository (SAIR) - the official
digital repository of scholarly and research information of the department
Downloaded by: [Anonymous]
On: August 28, 2019 at 9:52 AM CST
The giant clam culture project in the Philippines

The giant clam culture project in the Philippines started in 1984 with a joint collaborative project of eight Indo-Pacific countries spearheaded by Australia and supported by the Australian Center for International Agricultural Research (ACIAR). The objectives of the project were to develop culture techniques for giant clams for food and for restocking of depleted reef areas. Collaborating institutions were the Silliman University - Marine Laboratory in Dumaguete City, and the University of the Philippines - Marine Science Institute in Diliman, Quezon City. Today, after many scientific studies and conferences, culture techniques are nearing perfection, and hopefully would be picked up by an industry to supply a growing market and continue what has been initiated in the restocking of depleted reefs.

The institutions working under the ACIAR collaboration are willing to extend information and technology to interested parties. -- MBS

What are giant clams?

Giant clams are slow growing, long living organisms, and the largest living bivalve shells in the world. They are found in tropical waters (in clear water, barrier protected lagoon environments) of the Indo-Pacific like Papua New Guinea, Indonesia, Malaysia, Palau, Northern Australia, and the Philippines. They reach sexual maturity in 4-5 years. Experts refer to them as unique because they manufacture their own food through the algae that live on them, similar to corals. The algae supply food to the clams through photosynthesis which supply sugars and nitrogen-rich compounds. Referred to as “built-in food factories,” giant clams need only sunlight, water, and carbon dioxide in order to make their food. This is considered an advantage because in culture, feeding is entirely omitted.

When sexually mature, clams continuously release millions
of eggs in a day, spawning being triggered by diurnal, lunar, and environmental cues. However, mortality in the wild is high during this period. Lucky survivors settle on hard substrate, transform into juveniles, attach their byssal threads on reefs for anchor, and arrange themselves so that their mantles face the sun. Until 2.5 years, clams are vulnerable to predation. Growth during this period is fast, about 2.5 cm per yr in ideal reef flats. In degraded coasts, clam survival at this point is almost nil.

Until clams become adults, they undergo several development stages much like other bivalves: egg, gastrula, trochophore, veliger, juvenile. Fertilized eggs undergo gastrula to trochophore stages in 12 hr. After this, they become trochophores, by which time, they are still incapable of ingesting food particles. When the digestive system is complete (the veliger stage), they can now take small phytoplankton, three days after fertilization. In SUML, they are fed Isochrysis galbana. Veligers then metamorphose to juvenile clams 2 weeks after fertilization. Juveniles can be harvested 3-4 months after fertilization when they range from sizes 1-10 mm. From egg to juvenile, mortality is 99%.

How may clams be farmed?

Transfer of juveniles to the ocean environment can be done in intertidal areas with clear water, high salinity (away from freshwater runoffs), and good circulation. Clams are placed in trays, cages, enclosures or a combination of either on or without substrates. These areas would ensure that there is less fouling of cages, predation on clams is less severe, and human access for farm management is easier. For a cage size 1 x 5 x 0.3 m, approximately 100 juveniles (30-40 mm) can be stocked. For bigger juveniles, (70-80 mm), fewer clams should be stocked (30 ind).

By this time, clams are now relatively ready to survive by themselves. After 12-18 months in the nursery, giant clams of size 20 mm may be transferred to the growout phase. The site must first be considered with regard to the species used.

It is best to refer to a paper from SUML by Calumpong and Solis-Duran about constraints to restocking. The paper showed that of 26 sites restocked (more than half were marine sanctuaries, two were resorts, and one seaweed farm), the coral reefs yielded highest overall survival, followed by sandy areas and seagrass beds. Growth rates were comparable in these areas. The study also showed that restocking can be successful especially if the areas are protected from typhoons and poaching, and careful handling of clams is practiced. Survival is as much as 60%. But restocking must be measured not in terms of survival but on the recruits that have been traced to the restocking, thus, the necessity for markers.

Adult giant clams can grow to over 1 m length (T. gigas) making it the world’s biggest bivalve mollusc. According to Tisdell, this species is sometimes referred to as the killer clam, arising from the reputation for closing on divers, thus preventing them from returning to the surface. T. derasa is the second largest while T. crocea is the smallest. In SUML, 8-9 year old T. crocea are about 20 cm length.

The market for giant clams

In the Philippines, giant clam meat is popular to coastal dwellers, especially if typhoons and monsoon rains prevent the fishermen from going farther out to sea to fish. In 1987 (clams must still have been plentiful), fresh clam meat cost ranges were P7-25 in Guiuan, Samar; Naic, Cavite; Polillo, Quezon; and Alaminos, Pangasinan. In Bongao, Tawi-Tawi, giant clams cost P5 per bunch.

In Cebu and Negros Oriental, live T. squamosa, T. maxima, and H. hippopus 7.5 - 40 cm long cost P2-50 per pc. These are usually sold for the marine aquarium industry.

In Palawan, dried adductor muscle cost P70-120 per kg reportedly sold offshore to Taiwanese and Japanese vessels while in Cagayancillo Island, shells of giant clam (paired and unpaired) 7.5 - 13 cm long cost P0.60-14/kg. Adductor muscles of large
The United States has grown to become the single largest pearl jewelry consumer, purchasing US$1.47 billion, or 36% of the global pearl jewelry sales. Europe, which accounted for only a small fraction of the pearl market five years ago, is seeing its market share expand at a tremendous pace, with wholesalers reporting substantial growth year after year. The European pearl jewelry market is estimated at US$700-900 million. Meanwhile, Tahitian cultured pearl exports are expected to exceed 7,000 kg in 2000. Annual reports of Tahitian pearls were about 5,000 kg in 1996 and 1997; and more than 6,000 kg in 1998 and 1999. The Philippines, on the other hand, continues to establish itself in the international pearl market with exports increasing 22.8% to 586,665 g or 156 kg in 1999 compared with 1998.

REFERENCES

Alagarswami K and Dharmaraj S. Undated. Manual on Pearl Culture. CMRI Special Publication No. 20

IMBAO . . . from page 22

Lucinidae) that harbors symbiotic bacteria. This shell family has also been observed to live in hydrogen sulfide-rich habitats such as sewage outfalls, seagrass beds, mangrove swamps, and in organically rich sediments.

This means, researchers say, that imbao harbors symbiotic sulfur-oxidizing bacteria in its gills and has the mechanism within itself to use up sulfide. This capability would make imbao useful if raised in polyculture with shrimp. It is a fact that brackishwater pond sediments contain plenty of sulfide, particularly where the cultured animals are fed protein-rich diets. Imbao can very well answer this problem – and make aquaculture more environment-friendly.

REFERENCES

Conclusion

Experts say that the giant clams (nearing extinction in most parts of the world) are attractive to farm for economic, social, and ecological reasons because of their innate characteristics - selffeeding, sedentary habit, adult resistance to predation. Besides, technology for its mass production from breeding to harvest has been proven successful in many parts of the Indo-Pacific. But its development as an industry is difficult to appreciate considering the duration that capital is tied up prior to sales is lengthy, thus quick returns are not possible.

In Australia, farm-gate price of fresh clam meat ranges from $A3 to 7. In 1986, it was reported that Taiwan demand for adductor muscle of 100 ton/yr was at US$ 7.50 - 21.25/kg.