The milkfish hatchery

Castaños, M.
Aquaculture Department, Southeast Asian Fisheries Development Center

http://hdl.handle.net/10862/2828

Downloaded from http://repository.seafdec.org.ph, SEAFDEC/AQD's Institutional Repository
The milkfish hatchery

By M Castaños

Yes, it is quite profitable for hatchery owners to convert their tiger shrimp hatchery to milkfish hatchery.

A newly released report from SEAFDEC/AQD assessed the economic viability of 4 commercial milkfish hatcheries operating in 1992. AQD researcher Dr. Luis Ma. Garcia notes that hatchery owners can get a 54-61% return-on-investment and about 1.5 years payback period from operating either a large- or small-scale hatchery. The hatchery is operated using the technology developed by AQD in the '80s.

The conditions of profitability are as follows:

- the eggs or newly-hatched larvae are acquired at P6,000 per million at most**
- the selling price of fry is P0.50 each, if not more
- the working capital (for two runs) amounts to about P42,000 (small) or P123,000 (large)

In terms of production, the hatcheries produced half a million to nearly 4 million fry from 3-6 operations conducted from April to October. Larval survival ranged from 15 to 42% after 21-24 days. Earnings from the hatchery were nearly P200,000 to over P1 million.

"Hatchery operators can earn more than double the selling price of its produce by rearing 21-day old fry for an additional two weeks in nursery ponds," suggests Dr. Garcia. "The operational expenses of rearing fry in nursery ponds are minimal, because fry thrive on naturally grown food organisms."

More recently, two more hatchery owners attest to the profitability of milkfish hatchery using AQD technology. Luis Rojas of TRC hatchery (Batan, Aklan) and Salvador Gestosani of Sto. Nino hatchery (Guimbal, Iloilo) made runs starting 1996. But the hatcheries encountered low acceptance of hatchery fry by fishpond owners due to the perceived low growth and high weeks in nursery ponds," suggests Dr. Garcia. "The operational expenses of rearing fry in nursery ponds are minimal, because fry thrive on naturally grown food organisms."

More recently, two more hatchery owners attest to the profitability of milkfish hatchery using AQD technology. Luis Rojas of TRC hatchery (Batan, Aklan) and Salvador Gestosani of Sto. Nino hatchery (Guimbal, Iloilo) made runs starting 1996. But the hatcheries encountered low acceptance of hatchery fry by fishpond owners due to the perceived low growth and high
Training series for fry gatherers

SEAFDEC/AQD is conducting a series of lectures and training among fry gatherers in five southern Iloilo towns about the status of the milkfish fry fishery, the effect of the fry fishery on other fishery resources, and the use of milkfish and some larval by-catch in aquaculture.

These fry gatherers are among the many stakeholders being trained for empowerment under the Panay Gulf Development Program (PGDP) of Congresswoman Ninfa Garin of Iloilo’s First District. The project aims for both economic development in coastal towns and the conservation of coastal marine resources in Panay Gulf.

These fry gatherers operate the ‘fry sweeper’, ‘sagyap’, ‘tangab’ and other gear to collect milkfish fry, which have an established market. Unfortunately, during fry gathering, untold thousands of larvae and juveniles of hundreds of other species of fish (the larval by-catch) are killed incidentally, or more often, intentionally dumped on the beach to avoid repeated catching and sorting in the fry gears.

An AQD trainor emphasized that it is bad practice for milkfish fry gatherers to dump the larval by-catch because these larvae would otherwise grow to be the bigger fish caught by the municipal and commercial fisheries. All the fry gatherers were also fishermen (and some women), and they easily understood that in order for them to have big fish to catch, they must return to sea the larval by-catch from milkfish fry gathering.

The fry gatherers do recognize some of the other species of fish larvae and juveniles, but they had to be taught that snappers, groupers, seabass, rabbitfish, mullets, and scats have a potential market as seed for aquaculture. The PGDP also plans to use some of the freshwater-tolerant larval by-catch to seed upland and inland water bodies.

The lectures and discussions were conducted in the dialect, with plenty of visual aids. The first three batches of fry gatherers (total about 100) came from San Joaquin, and several more batches from Miagao, Guimbal, Tigbauan, and Iloilo will take their turn in the next few months. - By Tu Bagarinao
the right type of food to the milkfish at the right time and quantity. Larval rearing operations are presented in a chart that a hatchery operator follows, and where the water management, feeding scheme, and other critical procedures are indicated.

The chart on page 14 is AQD’s new and improved method of rearing milkfish larvae. It also reflects the actual practice of hatchery operators.

“We are able to improve the nutrition of the larvae by using vitamin C and what we call HUFA or highly unsaturated fatty acids,” explains AQD researcher Rolando Gapasin. “Vitamin C works the same in humans as in fishes. It strengthens the bones, reducing the incidence of scoliosis, distorted or twisted gill filaments, and short opercula and snout. Fatty acids are essential, too. What we are sure of is that, without fatty acids, fish larvae grow poorly, feeding is not very efficient, larvae develop anemia and there is high mortality.”

So, in the chart, hatchery owners provide not just rotifers and *Artemia* but enriched rotifers and *Artemia*. Enrichment is done by feeding these rotifers and *Artemia* HUFA booster diets supplemented with Vitamin C (commercially available) before these are given as feed to milkfish larvae. Enrichment may also be done by feeding rotifers/*Artemia* with microalgae with high HUFA content.

Better growth is the obvious result, but so is lesser incidence of deformed operculum where the gills are exposed.

The rate of fry deformity does not seem to have a large impact in nursery and grow-out ponds. The DA-BFAR station in Pagbilao, Quezon which made an independent study comparing wild and hatchery fry in nursery pond (~10 weeks) reported that only 3% of hatchery fry can be considered “abnormal,” but growth rates are about the same. On the other hand, an AQD cooperater in Negros reported a mere 0.23% deformity after about 9 weeks in nursery pond. Newly hatched larvae were sourced from AQD’s Tigbauan Station, Iloilo so transport stress may help account for the difference in survival.

In actual grow-out culture, deformity can hardly be seen in harvest-sized milkfish. AQD cooperators reported 0.003 to 0.05% aesthetically, visually unappealing fish in their commercial runs using hatchery fry. Wild and hatchery fry probably taste the same.

AQD remains cognizant of the industry’s apprehensions regarding hatchery produce. Thus, researchers continue in their efforts to refine the milkfish hatchery technology.