The use of haptophyceae in rearing experiments on larval Penaeus orientalis.

Li, M.R.; Bian, B.Z.; Ma, L. & Ma, L.

Date published: 1985

To cite this document: Li, M.R., Bian, B.Z., & Ma, L. (1985). The use of haptophyceae in rearing experiments on larval Penaeus orientalis (Abstract only). In Taki Y., Primavera J.H. and Llobrera J.A. (Eds.). Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimps, 4-7 December 1984, Iloilo City, Philippines (pp. 179-180). Iloilo City, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center.

Keywords: Diets, Food organism, Rearing, Shrimp culture, Haptophyta, Penaeus orientalis

To link to this document: http://hdl.handle.net/10862/907

Share on: Facebook | Twitter | Google Plus | Instagram

This content was downloaded from SEAFDEC/AQD Institutional Repository (SAIR) - the official digital repository of scholarly and research information of the department
Downloaded by: [Anonymous]
On: November 24, 2019 at 5:28 AM CST

Follow us on: Facebook | Twitter | Google Plus | Instagram
Library & Data Banking Services Section | Training & Information Division
Aquaculture Department | Southeast Asian Fisheries Development Center (SEAFDEC)
Tigbauan, Iloilo 5021 Philippines | Tel: (63-33) 330 7088, (63-33) 330 7000 loc 1340 | Fax: (63-33) 330 7088
Website: www.seafdec.org.ph | Email: library@seafdec.org.ph
Copyright © 2011-2015 SEAFDEC Aquaculture Department.
Study on the Larval Rearing of *Penaeus merguiensis*

Niwes Ruangpanit, Sujin Maneewongsa, Thanan Tattanon and Prakir Kraisingdeja
National Institute of Coastal Aquaculture
Kaoseng, Songkhla, Thailand

Nursing postlarvae of *Penaeus merguiensis* in the same tank as rearing always results in low survival rates, around 30%. One reason is that stocking density for P₁ is too high for postlarvae grown to P₂₀ size. Another reason may be that it is impossible to sufficiently clean a tank containing culture stock. In order to overcome the first constraint and to test whether the second is valid, rearing of nauplii to early post-larval stage was done in one tank, then early postlarvae were moved to another tank for nursing to P₂₀.

Rearing was done in rectangular, concrete tanks (5 m x 5 m x 2m) of 50 ton capacity, with an initial stocking density of 20-40 nauplii/l. Chaetoceros sp. at a density of 3.4 x 10⁴ cell/ml, or Tetraselmis sp. at 1-3 x 10⁴ cell/ml were fed to zoea stage, then rotifer was given when the larvae metamorphosed to mysis stage. Within 8-10 days, when all of the larvae metamorphosed to postlarval stage, they were transferred to the nursing tank. Postlarval nursing was done in rectangular, concrete tanks with a capacity of 12 or 30 tons. The stocking rate was 12 postlarvae/l in the 12-ton tanks and 8 postlarvae/l in the 30-ton tanks. The early postlarvae were fed constantly with brine shrimp, and the older postlarvae were fed 4-5 times daily with squid meat. Fifty to seventy percent of seawater was exchanged, and siphoning of food remnants was done daily. The postlarvae grew to an intermediate size (1.0-2.5 cm total length) for stocking in grow-out ponds within 12 to 20 days.

The results of rearing in 50-ton tanks with an initial stocking density of 20-25 postlarvae/l, 25-30 postlarvae/l and 30-40 postlarvae/l produced survival rates of 74.3%, 63.6% and 47.6%, respectively. The survival rate for nursing in 12-ton tanks, with stocking density of 12 postlarvae/l was 85.0% and for 30-ton tanks with stocking density of 8 postlarvae/l was 61.7%. These results seem to indicate that the rearing and nursing of shrimp would be more efficient if carried out in separate tanks.

At least five wild-caught *Penaeus monodon* from various maturation stages (initially classified *in vivo* as 0, I, II, III, IV, V) were measured, weighed and dissected for histological and histochemical studies. The anterior and posterior parts of the thoracic and abdominal regions of the ovary were sampled and stained with Mallory trichrome, alcian blue-periodic acid-Schiff (AB-PAS) and Sudan black.

Results showed that the ovary is composed of the ovarian wall and its extensions, zone of proliferation, follicle cell layer and oocytes. The proliferating cells are less than 10 µm, have thin rims of cytoplasm, and increase in size as maturation proceeds. Based on histology, the stages were finally classified into groups (1) previtellogenic (stage 0), (2) vitellogenic (stages I and II), (3) cortical rod (stages III and IV), and (4) spent (stage V). The previtellogenic group consists only of perinuclear oocytes (46-72 µm) which are stained negatively with AB-PAS and Sudan black. Oocytes bigger than 55 µm are enveloped by a single layer of follicle cells. The vitellogenic group is composed mostly of yolky oocytes (121-211 µm) with the following cytoplasmic inclusions: small granules of glycoproteins, medium-size globules of lipoglycoproteins, and few large lipid droplets. The cortical rod group consists mostly of yolky oocytes (288-408 µm) with additional rod-like bodies which contain acid and basic mucopolysaccharides but no lipid. The presence of cortical rods is a characteristic feature of mature penaeid ovaries. The spent group is similar to the previtellogenic group but contains some yolky oocytes, thicker follicle cell layers, or irregularly shaped perinuclear oocytes. Th GSI ranges of the four groups are 0.899-1.937, 3.099-7.598, 5.631-12.000 and 1.848-2.919, respectively.

The food value of five clones of Haptophyceae, *Coccolithus pelagicus*, *Dickateria zhanjiangensis*, *Isochrysis galbana*,...
Tahitian *Isochrysis* aff. *galbana*, and *Pseudoisochrysis paradoxa* were tested for larval *Penaeus orientalis*. The algae were semi-continuously cultured in 5,000 ml carboys with 4,000 ml of Guillard f/2 medium, under 2,000 lux continuous light and under aeration. The algal density was up to 1×10^5 cell/ml. Rearing experiments were conducted in round tanks with diameter of 45 cm. Algal density was controlled at 1×10^5 cell/ml in the course of the experiments. The larval density was 18 individual/100 ml; water temperature, 21-24°C; pH, 7.5-7.7; and sea water specific gravity, 1.019.

The results showed that of five clones used, Tahitian *I. aff. galbana* and *D. zhangjiangensis* proved to be the best. It took 9-11 days for nauplius I to develop into mysis I with survival rate of 73.5% and 73.4%, respectively.

The Tolerance of *Penaeus monodon* Eggs and Larvae to Fungicides against *Lagenidium* sp. and *Haliphthoros philippinensis*

Gilda L. Po and Elinor Sanvictores
Aquaculture Department
Southeast Asian Fisheries Development Center
P.O. Box 256, Iloilo City, Philippines

The *in vivo* effect of mycostatic levels of fungicides against the fungi *Lagenidium* sp. and *Haliphthoros* sp. were tested on *Penaeus monodon* eggs and larvae. Hatching rate and survival of nauplii, zoeae, mysis and postlarvae exposed to 10 mg/l Benzalkonium chloride, 1 mg/l Clotrimazole, 1 mg/l Crystal Violet, 10 mg/l 2,4-D, 10 mg/l Daconil, 20 mg/l laundry detergent, 1 mg/l Econazole nitrate, 10 mg/l Resiguard, 0.2 mg/l and 10 mg/l Treflan-R, 0.01 mg/l and 0.2 mg/l Trifluralin were monitored daily for 96 hr in a static bioassay in glass aquaria. Results showed that all test chemicals had no inhibitory effect on hatching rate but survival rate of hatched nauplii was significantly reduced in most treatments except that of 0.2 mg/l Treflan-R. Tests with zoeae, mysis and postlarvae indicated that 0.2 mg/l Treflan-R and 0.01 mg/l and 0.2 mg/l Trifluralin did not adversely affect survival. In addition, Benzalkonium chloride caused no significant mortalities among exposed mysis.

Growth and Survival of *Penaeus monodon* Postlarvae with Different Feeding Regimes and Stocking Densities in Earthen Brackishwater Nursery Ponds

Nilda S. Tabbu
Aquaculture Department
Southeast Asian Fisheries Development Center
P.O. Box 256, Iloilo City, Philippines

The effect of different stocking densities (50, 100 and 150/m²) and two feeding regimes (natural food, consisting mainly of lablab, and natural food plus artificial diet) on the growth and survival of *Penaeus monodon* postlarvae (PL) to PL4 were evaluated in eighteen 40 m² earthen brackishwater nursery ponds using tidal water exchange for a period of 45 days.

Results of the experiment indicated that the effect of different stocking densities was highly significant (P<0.01) on growth but not on survival for the two feeding regimes. Likewise, no interaction effect was discerned. Shrimps given artificial feed (Treatments II, IV and VI) obtained higher mean weight gains of 1.55, 1.17 and 1.05 g, respectively, than those that were not given artificial feed (I-1.44 g, III-0.92 g, and V-0.66 g). Similarly, those reared with artificial feed attained better survival of 41.62% (II), 67.44% (V) and 52.14% (VI) compared to shrimp that were not given artificial feed (I-42.53%, III-54.61% and V-46.90%).

An exploratory economic study showed that the nursery operation gave promising results in all treatments. High rate of investment (ROI) was obtained to give a safe margin for the risk involved in this kind of business. Among all treatments, treatment V had the highest ROI of 683% and shortest payback period of 0.19 years.

Intermediate Culture of Chinese Prawn Without Feeding in Nursery Ponds

W. Zhang and Ming Ren Li
Institute of Oceanology, Academia Sinica
Qingdao, China

The aim of the experiments is to find a new way to accomplish intermediate culture of the penaeid prawn in nursery ponds. Experiments have been carried out in prawn farms in Haiyang County, Shandong Province. Prawn fry were stocked at high density in a nursery pond. Commercial fertilizer was added to the nursery pond to fertilize the pond water as nutrients for the planktonic and benthic organisms. The prawn fry in the pond fed only on the available natural food organisms without any special feed supply and grew normally. The survival and growth rate of the prawn fry are discussed.

Survival, Growth and Production of White Shrimp *Penaeus indicus* in Brackishwater Ponds

Florentino D. Apud, Danilo Javellana and Reynaldo Jomen
Aquaculture Department
Southeast Asian Fisheries Development Center
P.O. Box 256, Iloilo City, Philippines

This study was conducted in 4 one-ha ponds, 70-100 cm deep and 2 two-ha ponds, 40-70 cm deep to evaluate the survival, growth and production of white shrimp, *Penaeus indicus* stocked at 50,000/ha and cultured within a period of 90 days with supplementary feeding.