Now showing items 1-2 of 2

    • Article

      Air breathing of aquatic burrow-dwelling eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae) 

      TT Gonzales, M Katoh & A Ishimatsu - Journal of Experimental Biology, 2006 - Company of Biologists
      Odontamblyopus lacepedii is an eel goby that inhabits both coastal waters and intertidal zones in East Asia, including Japan. The fish excavates burrows in mudflats but, unlike the sympatric amphibious mudskippers, it does not emerge but stays in the burrows filled with hypoxic water during low tide. Endoscopic observations of the field burrows demonstrated that the fish breathed air in the burrow opening; air breathing commenced 1.3 h following burrow emersion, when water PO2 was ∼2.8 kPa, with an air-breathing frequency (fAB) of 7.3±2.9 breaths h–1 (mean ± s.d., N=5). Laboratory experiments revealed that the fish is a facultative air breather. It never breathed air in normoxic water (PO2=20.7 kPa) but started bimodal respiration when water PO2 was reduced to 1.0–3.1 kPa. The fish held air inside the mouth and probably used the gills as gas-exchange surfaces since no rich vascularization occurred in the mouth linings. As is known for other air-breathing fishes, fAB increased with decreasing water PO2. Both buccal gas volume (VB) and inspired volume (VI) were significantly correlated with body mass (Mb). At a given Mb, VI was nearly always equal to VB, implying almost complete buccal gas renewal in every breathing cycle. A temporal reduction in expired volume (VE) was probably due to a low aerial gas exchange ratio (CO2 elimination/O2 uptake). Air breathing appears to have evolved in O. lacepedii as an adaptation to aquatic hypoxia in the burrows. The acquisition of the novel respiratory capacity enables this species to stay in the burrows during low tide and extends the resident time in the mudflat, thereby increasing its chances of tapping the rich resources of the area.
    • Article

      Gross and fine anatomy of the respiratory vasculature of the mudskipper, Periophthalmodon schlosseri (Gobiidae: Oxudercinae) 

      TT Gonzales, M Katoh, MA Ghaffar & A Ishimatsu - Journal of Morphology, 2011 - Wiley-Blackwell
      To illustrate vascular modification accompanying transition from aquatic to amphibious life in gobies, we investigated the respiratory vasculatures of the gills and the bucco-opercular cavities in one of the most terrestrially-adapted mudskippers, Periophthalmodon schlosseri, using the corrosion casting technique. The vascular system of Pn. schlosseri retains the typical fish configuration with a serial connection of the gills and the systemic circuits, suggesting a lack of separation of O2-poor systemic venous blood and O2-rich effluent blood from the air-breathing surfaces. The gills appear to play a limited role in gas exchange, as evidenced from the sparsely-spaced short filaments and the modification of secondary lamellar vasculature into five to eight parallel channels that are larger than red blood cell size, unlike the extensive sinusoidal system seen in purely water-breathing fishes. In contrast, the epithelia of the bucco-opercular chamber, branchial arches, and leading edge of the filaments are extensively laden with capillaries having a short (<10 μm) diffusion distance, which strongly demonstrate the principal respiratory function of these surfaces. These capillaries form spiral coils of three to five turns as they approach the epithelial surface. The respiratory capillaries of the bucco-opercular chamber are supplied by efferent blood from the gills and drained by the systemic venous pathway. We also compared the degree of capillarization in the bucco-opercular epithelia of Pn. schlosseri with that of the three related intertidal-burrowing gobies (aquatic, non-air-breathing Acanthogobius hasta; aquatic, facultative air-breathing Odontamblyopus lacepedii; amphibious air-breathing Periophthalmus modestus) through histological analysis. The comparison revealed a clear trend of wider distribution of denser capillary networks in these epithelia with increasing reliance on air breathing, consistent with the highest aerial respiratory capacity of Pn. schlosseri among the four species.