Now showing items 1-4 of 4

    • Article

      Air breathing of aquatic burrow-dwelling eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae) 

      TT Gonzales, M Katoh & A Ishimatsu - Journal of Experimental Biology, 2006 - Company of Biologists
      Odontamblyopus lacepedii is an eel goby that inhabits both coastal waters and intertidal zones in East Asia, including Japan. The fish excavates burrows in mudflats but, unlike the sympatric amphibious mudskippers, it does not emerge but stays in the burrows filled with hypoxic water during low tide. Endoscopic observations of the field burrows demonstrated that the fish breathed air in the burrow opening; air breathing commenced 1.3 h following burrow emersion, when water PO2 was ∼2.8 kPa, with an air-breathing frequency (fAB) of 7.3±2.9 breaths h–1 (mean ± s.d., N=5). Laboratory experiments revealed that the fish is a facultative air breather. It never breathed air in normoxic water (PO2=20.7 kPa) but started bimodal respiration when water PO2 was reduced to 1.0–3.1 kPa. The fish held air inside the mouth and probably used the gills as gas-exchange surfaces since no rich vascularization occurred in the mouth linings. As is known for other air-breathing fishes, fAB increased with decreasing water PO2. Both buccal gas volume (VB) and inspired volume (VI) were significantly correlated with body mass (Mb). At a given Mb, VI was nearly always equal to VB, implying almost complete buccal gas renewal in every breathing cycle. A temporal reduction in expired volume (VE) was probably due to a low aerial gas exchange ratio (CO2 elimination/O2 uptake). Air breathing appears to have evolved in O. lacepedii as an adaptation to aquatic hypoxia in the burrows. The acquisition of the novel respiratory capacity enables this species to stay in the burrows during low tide and extends the resident time in the mudflat, thereby increasing its chances of tapping the rich resources of the area.
    • Conference paper

      Effects of CO2-induced ocean environmental changes on marine life: implications for aquaculture. 

      A Ishimatsu & H Kurihara - In BO Acosta, RM Coloso, EGT de Jesus-Ayson & JD Toledo (Eds.), Sustainable aquaculture development for food security in Southeast Asia towards 2020. Proceedings of the Regional Technical Consultation on Sustainable Aquaculture Development in Southeast Asia Towards 2020, 2011 - Aquaculture Department, Southeast Asian Fisheries Development Center
      The world's oceans are becoming warmer and acidic. The atmospheric carbon dioxide concentration has increased from 280 ppm at pre-industrial revolution to above 380 ppm today. The 4th IPCC report predicts that it will range from 540 to nearly 1,000 ppm by the end of the century. The increased CO2 not only warms surface seawater, but also acidifies it (usually termed as ocean acidification) by diffusing across the ocean surface and forming carbonic acid. Our knowledge is still scarce as to how these ocean environmental changes will affect marine life. The early studies on the impact of ocean acidification focused on corals aiming to clarify effects of high-CO2 seawater on their calcification processes. However, more recent studies have revealed that in fact ocean acidification, either alone or coupled with warming, could have detrimental impacts on a variety of biological processes in different taxa. We have shown that early development of marine bivalves (oysters and mussels) could be severely disrupted under elevated CO2 conditions (ca. 2,000 ppm). When a marine shrimp was exposed to seawater equilibrated with air containing 1,000 ppm CO2 for 30 weeks, survival was only 55% as compared with 90% in the control. Gonad maturation of a sea urchin was delayed by one month under the same CO2 conditions at ambient temperature, but when accompanied with increased temperature of 2 degree C above ambient, gonad maturation was not only delayed but also significantly suppressed; the number of eggs in the ovary was reduced to only 20% of the control. It has been shown that tropical animals already live near their thermal tolerant maxima, and therefore even small increases of environmental temperature could reduce their environmental fitness. These recent findings bear significant implication in aquaculture and fisheries production, in particular, in tropical countries. This paper will summarize recent data on these topics and discuss possible adaptation measures.
    • Article

      Gross and fine anatomy of the respiratory vasculature of the mudskipper, Periophthalmodon schlosseri (Gobiidae: Oxudercinae) 

      TT Gonzales, M Katoh, MA Ghaffar & A Ishimatsu - Journal of Morphology, 2011 - Wiley-Blackwell
      To illustrate vascular modification accompanying transition from aquatic to amphibious life in gobies, we investigated the respiratory vasculatures of the gills and the bucco-opercular cavities in one of the most terrestrially-adapted mudskippers, Periophthalmodon schlosseri, using the corrosion casting technique. The vascular system of Pn. schlosseri retains the typical fish configuration with a serial connection of the gills and the systemic circuits, suggesting a lack of separation of O2-poor systemic venous blood and O2-rich effluent blood from the air-breathing surfaces. The gills appear to play a limited role in gas exchange, as evidenced from the sparsely-spaced short filaments and the modification of secondary lamellar vasculature into five to eight parallel channels that are larger than red blood cell size, unlike the extensive sinusoidal system seen in purely water-breathing fishes. In contrast, the epithelia of the bucco-opercular chamber, branchial arches, and leading edge of the filaments are extensively laden with capillaries having a short (<10 μm) diffusion distance, which strongly demonstrate the principal respiratory function of these surfaces. These capillaries form spiral coils of three to five turns as they approach the epithelial surface. The respiratory capillaries of the bucco-opercular chamber are supplied by efferent blood from the gills and drained by the systemic venous pathway. We also compared the degree of capillarization in the bucco-opercular epithelia of Pn. schlosseri with that of the three related intertidal-burrowing gobies (aquatic, non-air-breathing Acanthogobius hasta; aquatic, facultative air-breathing Odontamblyopus lacepedii; amphibious air-breathing Periophthalmus modestus) through histological analysis. The comparison revealed a clear trend of wider distribution of denser capillary networks in these epithelia with increasing reliance on air breathing, consistent with the highest aerial respiratory capacity of Pn. schlosseri among the four species.
    • Article

      Respiratory vasculatures of the intertidal air-breathing eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae) 

      TT Gonzales, K Masaya & A Ishimatsu - Environmental Biology of Fishes, 2008 - Springer Verlag
      Lacking a propensity to emerge over the mud surface, the eel goby, Odontamblyopus lacepedii, survives low tide periods by continuously breathing air in burrows filled with hypoxic water. As with most marine air-breathing fishes, O. lacepedii does not possess an accessory air-breathing organ, but holds air in the buccal-opercular cavity. The present study aimed to clarify how the respiratory vasculature has been modified in this facultative air-breathing fish. Results showed that the gills apparently lacked structural modifications for air breathing, whereas the inner epithelia of the opercula were richly vascularized. Comparison with two sympatric gobies revealed that the density of blood capillaries within 10?m from the inner opercular epithelial surface in O. lacepedii (14.5 ± 3.0 capillaries mm-1; mean ± s.d., n = 3) was significantly higher than in the aquatic non-air-breathing Acanthogobius hasta (0.0 ± 0.0) but significantly lower than in the amphibious air-breathing mudskipper, Periophthalmus modestus (59.1 ± 8.5). The opercular capillary bed was supplied predominantly by the 1st efferent branchial arteries (EBA1) and drained by the opercular veins, which open into the anterior cardinal vein. Deep invaginations at the distal end of the EBA1 and the junction with EBA2 are suggestive of blood flow regulatory sites during breath-holding and apnoeic periods. It remains to be investigated how blood flow through the gills is maintained during breath holding when the buccal–opercular cavity is filled with air.