Now showing items 1-2 of 2

    • Article

      Full-genome sequencing and confirmation of the causative agent of erythrocytic inclusion body syndrome in coho salmon identifies a new type of piscine orthoreovirus 

      Erythrocytic inclusion body syndrome (EIBS) causes mass mortality in farmed salmonid fish, including the coho salmon, Onchorhynchus kisutchi, and chinook salmon, O. tshawytscha. The causative agent of the disease is a virus with an icosahedral virion structure, but this virus has not been characterized at the molecular level. In this study, we sequenced the genome of a virus purified from EIBS-affected coho salmon. The virus has 10 dsRNA genomic segments (L1, L2, L3, M1, M2, M3, S1, S2, S3, and S4), which closely resembles the genomic organization of piscine orthoreovirus (PRV), the causative agent of heart and skeletal inflammation (HSMI) in Atlantic salmon and HSMI-like disease in coho salmon. The genomic segments of the novel virus contain at least 10 open reading frames (ORFs): lambda 1 (λ1), λ2, λ3, mu 1 (μ1), μ2, μNS, sigma 1 (σ1), σ2, σ3, and σNS. An additional ORF encoding a 12.6-kDa protein (homologue of PRV p13) occurs in the same genomic segment as σ3. Phylogenetic analyses based on S1 and λ3 suggest that this novel virus is closely related to PRV, but distinctly different. Therefore, we designated the new virus ‘piscine orthoreovirus 2’ (PRV-2). Reverse transcription–quantitative real-time PCR revealed a significant increase in PRV-2 RNA in fish blood after the artificial infection of EIBS-naïve fish but not in that of fish that had recovered from EIBS. The degree of anemia in each fish increased as the PRV-2 RNA increased during an epizootic season of EIBS on an inland coho salmon farm. These results indicate that PRV-2 is the probable causative agent of EIBS in coho salmon, and that the host acquires immunity to reinfection with this virus. Further research is required to determine the host range of PRV species and the relationship between EIBS and HSMI in salmonid fish.
    • Article

      Molecular epidemiology of koi herpesvirus 

      J Kurita, K Yuasa, T Ito, M Sano, RP Hedrick, MY Engelsma, OLM Haenen, A Sunarto, EB Kholidin, HY Chou, MC Tung, L de la Peña, G Lio-Po, C Tu, K Way & T Iida - Fish Pathology, 2009 - Japanese Society of Fish Pathology
      Three regions of koi herpesvirus (KHV) genomic DNA were compared for 34 samples from Japan, six from Indonesia, two from Taiwan, one from the Philippines, 13 from the Netherlands, one from the UK, one from the USA and one from Israel. The analyzed genomic regions included known PCR-detection targets (SphI-5, 9/5 and the thymidine kinase gene). The KHVs from Asian countries were very homogeneous, although two variants were noted based on a single nucleotide polymorphism. In contrast, seven variants were found in KHVs from outside of Asia, and although closely related to one another, they were clearly distinct from those from Asian. The results suggest that a clear genetic distinction exists between Asian and European (including each single isolate from the USA and Israel) types of KHV, and that unique types of KHV were independently introduced or emerged in the respective geographic locations.