Now showing items 1-2 of 2

    • Article

      Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture 

      RM Coloso, K King, JW Fletcher, P Weis, A Werner & RP Ferraris - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2003 - Springer Verlag
      Phosphate utilization by fish is an important issue because of its critical roles in fish growth and aquatic environmental pollution. High dietary phosphorus (P) levels typically decrease the efficiency of P utilization, thereby increasing the amount of P excreted as metabolic waste in effluents emanating from rainbow trout aquaculture. In mammals, vitamin D3 is a known regulator of P utilization but in fish, its regulatory role is unclear. Moreover, the effects of dietary P and vitamin D3 on expression of enzymatic and transport systems potentially involved in phosphate utilization are little known. We therefore monitored production of effluent P, levels of plasma vitamin D3 metabolites, as well as expression of phosphatases and the sodium phosphate cotransporter (NaPi2) in trout fed semipu diets that varied in dietary P and vitamin D3 levels. Mean soluble P concentrations varied markedly with dietary P but not with vitamin D3, and constituted 40–70% of total effluent P production by trout. Particulate P concentrations accounted for 25–50% of effluent P production, but did not vary with dietary P or vitamin D3. P in settleable wastes accounted for <10% of effluent P. The stronger effect of dietary P on effluent P levels is paralleled by its striking effects on phosphatases and NaPi2. The mRNA abundance of the intestinal and renal sodium phosphate transporters increased in fish fed low dietary P; vitamin D3 had no effect. Low-P diets reduced plasma phosphate concentrations. Intracellular phytase activity increased but brushborder alkaline phosphatase activity decreased in the intestine, pyloric caeca, and gills of trout fed diets containing low dietary P. Vitamin D3 had no effect on enzyme activities. Moreover, plasma concentrations of 25-hydroxyvitamin D3 and of 1,25-dihydroxyvitamin D3 were unaffected by dietary P and vitamin D3 levels. The major regulator of P metabolism, and ultimately of levels of P in the effluent from trout culture, is dietary P.
    • Article

      Effect of dietary phosphorus and vitamin D3 on phosphorus levels in effluent from the experimental culture of rainbow trout (Oncorhynchus mykiss) 

      RM Coloso, SP Basantes, K King, MA Hendrix, JW Fletcher, P Weis & RP Ferraris - Aquaculture, 2001 - Elsevier
      Excessive phosphorus (P) levels in aquaculture effluents violate federally mandated limits and pose a serious threat to the freshwater environment. In rainbow trout culture, effluent P probably originates as fecal and metabolic waste product because assimilation of dietary P is relatively low. We therefore decreased dietary P and increased dietary vitamin D3 levels, methods that enhance P assimilation in mammals, in purified and semi-purified trout diets, then monitored effluent P. Soluble effluent P reached a peak right after feeding and returned to baseline levels in between feeding times. The peak and average concentrations of soluble P in the effluent were mainly influenced by dietary P. Average P in fecal dry matter also decreased with dietary P. Neither dietary P nor vitamin D3 under the conditions of the experiment had significant effects on whole body P content but P deposition (as a percentage of P intake) decreased with increased dietary P. The dietary combination of low P and high vitamin D3 decreased soluble and fecal P levels in the effluent indicating a strategy whereby effluent P concentrations can be reduced by regulation of P metabolism.