SEAFDEC/AQDINSTITUTIONAL REPOSITORY
    • English
    • 日本語
    • ไทย
    • Bahasa Indonesia
  • English 
    • English
    • 日本語
    • ไทย
    • Bahasa Indonesia
  • Login
View Item 
  •   SEAFDEC/AQD Institutional Repository Home
  • 03 SEAFDEC/AQD External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • View Item
  •   SEAFDEC/AQD Institutional Repository Home
  • 03 SEAFDEC/AQD External Publications
  • Journal Articles, Conference Papers and Book Chapters by SEAFDEC Staff
  • Journal Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sulphide tolerance and adaptation in the California killifish, Fundulus parvipinnis, a salt marsh resident

  • Global styles
  • MLA
  • Vancouver
  • Elsevier - Harvard
  • APA
  • Help
Thumbnail
View/Open
Request a copy
Date
1993
Author
Bagarinao, Teodora ORCID
Vetter, R. D.
Page views
1,454
ASFA keyword
biochemical composition ASFA
blood ASFA
detoxification ASFA
ecophysiology ASFA
enzymatic activity ASFA
enzyme inhibitors ASFA
fish physiology ASFA
hydrogen sulphide ASFA
saltmarshes ASFA
toxicity tolerance ASFA
Taxonomic term
Fundulus parvipinnis GBIF
Metadata
Show full item record

Cited times in Scopus



Share 
 
Abstract
Hydrogen sulphide is a toxicant naturally produced in hypoxic marine sediments, hydrocarbon and brine seeps and hydrothermal vents. The California killifish, a salt marsh resident, is remarkably tolerant of sulphide. The 50% lethal concentration is 700 μM total sulphide in 96 h, and 5 mM in 8 h (determined in flow-through, oxygenated sea water). Killifish exposed to sulphide produce thiosulphate which accumulates in the blood. The cytochrome c oxidase (a major site of toxicity) of the killifish is 50% inhibited by <1 μM sulphide. Killifish liver mitochondria are poisoned by 50–75 μM sulphide but can oxidize 10–20 μM sulphide to thiosulphate. Sulphide causes sulphhaemoglobin formation (and impairment of oxygen transport) at 1–5 mM in vitro and to a small extent at 2 mM in vivo. Killifish blood neither catalyses sulphide oxidation significantly nor binds sulphide at environmental (low) sulphide concentrations. Exposure to 200 μM and 700 μM sulphide over several days causes significant increases in lactate concentrations, indicating shift to anaerobic glycolysis. However, individuals with the most lactate die. In terms of diffusible H2S, the killifish can withstand concentrations two to three orders of magnitude greater than would poison cytochrome c oxidase. The high sulphide tolerance of the killifish, particularly of concentrations typical of salt marshes, can be explained chiefly by mitochondrial sulphide oxidation. Sulphide tolerance and mitochondrial sulphide oxidation in the killifish have a constitutive basis, i.e. do not diminish in fish held in the laboratory in sulphide-free water for 1–2 months, and are improved by prior acclimation.
URI
http://hdl.handle.net/10862/1405
Suggested Citation
Bagarinao, T., & Vetter, R. D. (1993). Sulphide tolerance and adaptation in the California killifish, Fundulus parvipinnis, a salt marsh resident. Journal of Fish Biology, 42(5), 729-748. https://doi.org/10.1111/j.1095-8649.1993.tb00381.x 
DOI
10.1111/j.1095-8649.1993.tb00381.x
Type
Article
ISSN
0022-1112
Collections
  • Journal Articles [1180]


© SEAFDEC/AQD  2023
Send Feedback | Subscribe
 

 

Browse

All of SAIRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

© SEAFDEC/AQD  2023
Send Feedback | Subscribe
 

 

Export citations

Export the current results of the search query as a citation list. Select one of the available citation styles, or add a new one using the "Citations format" option present in the "My account" section.

The list of citations that can be exported is limited to items.

Export citations

Export the current item as a citation. Select one of the available citation styles, or add a new one using the "Citations format" option present in the "My account" section.

Export Citations

DOCUMENT REQUEST NOT AVAILABLE

This publication is still available (in PRINT) and for sale at AQD bookstore. The library is currently restricted to send PDF of publications that are still for sale.

You may contact bookstore@seafdec.org.ph or visit AQD bookstore for orders.

FILE UNDER EMBARGO

This file associated with this publication is currently under embargo. This will be available for download after the embargo date.