Southeast Asian Fisheries Development Center, Aquaculture Department Institutional Repository (SAIR) is the official digital repository of scholarly and research information of the department. This is to enable the effective dissemination of AQD researchers' in-house and external publications for free and online. The repository uses DSpace, an open source software, developed at Massachusetts Institute of Technology (MIT) Libraries. It is an Open Archives Initiative (OAI)-compliant.

Initially, the repository shall contain preprints, full-texts or abstracts of journal articles, books and conference proceedings written by SEAFDEC/AQD scientists and researchers. The aim is to promote these publications especially those published in international peer-reviewed journals and generate higher citation through increased visibility.

It will also provide free access to all in-house publications of SEAFDEC/AQD. Full-text digitized copies of fishfarmer-friendly materials like books, handbooks, policy guidebooks, conference proceedings, extension manuals, institutional reports, annual reports (AQD Highlights), and newsletters (SEAFDEC Asian Aquaculture, Aqua Farm News, AquaDept News and AQD Matters) can be retrieved and downloaded.

In the future, SAIR will expand its collection to include images, presentations, audios, and videos among others.

The objectives of the repository are to: (1) to provide reliable means for SEAFDEC/AQD researchers to store, preserve and share their research outputs and (2) to provide easy access and increase the visibility of SEAFDEC/AQD scientific publications

SAIR also aims to encourage SEAFDEC/AQD researchers for self-archiving and submitting pre-prints from which metadata will be screened and approved by the library staff.

  • Article

    Dietary soy peptide enhances thermotolerance and survival of juvenile japanese flounder, Paralichthys olivaceus 

    JA Ragaza, REP Mamauag, S Yokoyama, M Ishikawa & S Koshio - Journal of the World Aquaculture Society, 2015 - World Aquaculture Society
    Soy peptide (SP), a soy protein enzymatic hydrolysate, contains bioactive substances that could be utilized as an immune-stimulating feed ingredient. The experiment evaluated the efficacy of dietary SP on promoting growth, and enhancing tolerance and survival to heat stress in juvenile Japanese flounder, Paralichthys olivaceus. Four diets were incorporated with different levels of SP (0, 2, 5, and 10%) and a 6-wk feeding trial ensued. Following the feeding trial, the experimental groups were subjected to heat stress to measure survival rate and heat shock protein 70s (HSP70s) in gill, liver, and skin. Fish fed diets with SP inclusion showed considerable decrease in percent weight gain. Significantly higher lethal time values to 50% mortality (LT50) value were recorded for fish fed 10% SP. Moreover, LT50 values of fish fed 2 and 5% SP were significantly higher compared with fish fed control diet. HSP70s produced in all the tissues were significantly highest in fish fed 10% SP. HSP70s values were significantly higher in fish fed 2 and 5% SP compared with fish fed control diet. A significant reduction in HSP70s among all groups during recovery period was also observed. These results suggest that SP can be used to enhance the immune response and survival of P. olivaceus under heat stress.

Select a community to browse its collections.

  • Article

    Optimum low salinity to reduce cannibalism and improve survival of the larvae of freshwater African catfish Clarias gariepinus 

    G Kawamura, T Bagarinao, ASK Yong, PW Sao, LS Lim & S Senoo - Fisheries Science, 2017 - Springer Verlag
    The freshwater African catfish Clarias gariepinus is carnivorous and cannibalistic even during the larval and juvenile stages and this behavior causes economic losses in aquaculture. This study examined for the first time the effect of salinity on cannibalism, survival, and growth of African catfish larvae in the hatchery. Larvae (4 days old, median 7.8 mm TL, 2.8 mg BW) of the African catfish were reared for 21 days at nominal salinity 0, 1, 2, 3, 4, 5, 6, and 7 ppt. After 21 days, they grew to 10–39 mm (median 22 mm) and 10–490 mg (median 90 mg), with no significant difference by salinity treatments. Survival ratios were similarly low (24–31%) at 0, 1, 3, and 7 ppt and significantly higher (49–55%) at 2, 4, 5, and 6 ppt. Cannibalism was significantly lower, 15–30% at 4–6 ppt, than the 40–50% at 0–3 and 7 ppt. Size variation was lower at 4–6 ppt and higher at 0–3 and 7 ppt. We recommend hatchery rearing of African catfish at the optimum low salinity of 4–6 ppt rather than in full fresh water at least up to 21 days. This rearing method fosters larval welfare and improves hatchery production.
  • Article

    Quality assessment of newly hatched mud crab, Scylla serrata, larvae 

    ET Quinitio, JJ dela Cruz-Huervana & FD Parado-Estepa - Aquaculture Research, 2017 - Wiley
    Starvation and exposure to formalin were investigated as possible stress tests for evaluating the quality of mud crab, Scylla serrata, larvae. For the starvation stress test, newly hatched zoeae stocked in 150-ml containers were either starved or fed rotifers. Similarly, newly hatched zoeae were stocked in containers with seawater of 0 (control), 20, 30 and 40 mg/L formalin for the formalin stress test. The zoeae from the same batches were used for seed production to monitor their performance and validate the results of stress tests. Starvation was found to be unsuitable for larval quality evaluation. However, the impact of initial food deprivation on the newly hatched larvae indicates that feeding immediately after hatching is necessary for mud crab larvae. Exposure of larvae to 40 mg/L formalin for 3 hr appeared to be a reliable and practical method for larval quality assessment as the survival of larvae in the mass production tanks validated the classification of good and poor quality batches in the stress tests. On this basis, a hatchery operator can decide which batch should be cultured further. Finally, there appears to be a link between the quality of larvae and the performance at the megalopa and early juvenile crabs.
  • Article

    Colour discrimination in dim light by the larvae of the African catfish Clarias gariepinus 

    G Kawamura, T Bagarinao, PK Hoo, J Justin & LS Lim - Ichthyological Research, 2017 - Springer
    Many demersal fish species undergo vertical shifts in habitats during ontogeny especially after larval metamorphosis. The visual spectral sensitivity shifts with the habitat, indicating a change in colour vision. Colour vision depends on sufficient ambient light and becomes ineffective at a particular low light intensity. It is not known how fishes see colour in dim light. By means of a behavioural experiment on larval African catfish Clarias gariepinus in the laboratory, we determined colour vision and colour discrimination in dim light. Light-adapted larvae were subjected to classical conditioning to associate a reward feed with a green or a red stimulus placed among 7 shades of grey. The larvae learned this visual task after 70 and 90 trials. A different batch of larvae were trained to discriminate between green and red and then tested for the ability to discriminate between these colours, as the light intensity was reduced. The larvae learned this visual task after 110 trials in bright light and were able to discriminate colours, as light was dimmed until 0.01 lx, the minimal illuminance measurable in this study, and similar to starlight. The retinae of the larvae were found to be light adapted at 0.01 lx; thus indicating cone-based colour vision at this illuminance. For comparison, three human subjects were tested under similar conditions and showed a colour vision threshold at between 1.5 and 0.1 lx. For the larvae of C. gariepinus, the ability of colour discrimination in dim light is probably due to its retinal tapetum, which could increase the sensitivity of cones.
  • Article

    Morphological deformities in mud crab Scylla serrata juveniles exposed to antibiotics during the larval stage 

    GS Pates Jr., ET Quinitio & FD Parado-Estepa - Aquaculture Research, 2017 - Wiley
    The effects of antibiotics on the external deformities, growth and survival of mud crab Scylla serrata larvae and juveniles were determined. Zoeae were exposed to oxytetracycline (OTC) (0, 3.0, 6.0, 9.0, 12 mg L-1) and furazolidone (FZD) (0, 0.5, 1.0, 1.5, 2.0 mg L-1) in the first and second experiments, respectively, until the late megalopa. The crab instars were grown in nursery tanks for 1 month. Larvae survived until megalopa only at 3.0 and 6.0 mg L-1 OTC or 0.5 and 1.0 mg L-1 FZD. These four concentrations were run simultaneously in another experiment. Morphological deformities in zoea 5 were bent dorsal, rostral and furcal spines. There was no significant difference (P > 0.05) on the deformities of zoea 5 in 3.0 and 6.0 mg L-1 OTC and 0.5 and 1.0 mg L-1 FZD. Significantly (P < 0.05) higher survival and faster growth were attained in 3.0 mg L-1 OTC and 0.5 mg L-1 FZD. Deformities observed in juveniles were fused frontal and lateral spines, asymmetrical and depressed tip of abdominal flap and gap between sternites. High percentage occurrence of deformities was observed in the 6.0 mg L-1 OTC and 1.0 mg L-1 FZD in the first and third experiments, respectively. There was no significant difference (P > 0.05) observed in the survival of juveniles in OTC and FZD treatments. However, growth was significantly (P < 0.05) faster in lower concentrations of the two antibiotics. The study shows the effects of OTC and FZD in the morphology of mud crab. Therefore, there is a need to eliminate the use of antibiotics and find alternatives.
  • Article

    Abdominal segment deformity syndrome (asds) and fused body segment deformity (fbsd) in cultured Penaeus indicus 

    The abdominal segment deformity disease (ASDD) is a new shrimp disease reported only in cultured Penaeus vannamei in Thailand. Shrimp with ASDD have deformed abdominal segment, jagged gut line and bumpy surfaces. Similar signs were observed in cultured P. indicus in the Philippines. However, aside from the signs described for ASDD, some P. indicus showing abdominal segment deformity syndrome (ASDS) had more severe deformities up to the extent that the number of body segments was reduced due to fusion. Shrimp with fused body segment deformity (FBSD) had four instead of five pairs of legs. To account the prevalence of the deformities in P. indicus, shrimp were classified into grossly normal shrimp (NS), shrimp with abdominal segment deformity syndrome (ASDS) and shrimp with fused segments (FBSD). Out of the shrimp sampled, 83.4 ± 5.4% was NS, 10.9 ± 6.2% was ASDS and 5.7 ± 3.0% was FBSD. Morphometric characteristics of the shrimp were measured. There was no significant difference in body weight (BW) among male and female NS, ASDS and FBSD. In both sexes, total length (TL) of FBSD was significantly shorter compared to NS and ASDS. Shrimp samples were also screened to be negative for known infectious viral diseases including white spot syndrome virus (WSSV), infectious hypodermal and haematopoietic necrosis virus (IHHNV), infectious myonecrosis virus (IMNV), P. vannamei nodavirus (PvNV), Macrobrachium rosenbergii nodavirus (MrNV) and Taura syndrome virus (TSV). Occurrence of ASDS and FBSD in post-larvae (PL) produced from captive and wild spawners were also determined. Based on a tank experiment, no significant difference was detected between the percentages of ASDS in PL produced from wild or captive spawners but FBSD was only noted in PL produced from the latter. Deformities generally did not affect the size of P. indicus except for the reduced length of shrimp with FBSD which when coupled with missing pleopods could lead to major economic loss for shrimp farmers if not addressed properly.

View more