Recent Submissions

  • Book

    Philippine National Standard: Dried anchovies 

    Bureau of Agriculture and Fisheries Standards - 2016 - Bureau of Agriculture and Fisheries Standards
    This PNS for dried anchovies aims to provide a common understanding on the scope of the standard, product description, process description, essential composition and quality factors, food additives, contaminants, hygiene and handling, packaging and labeling, methods of sampling, examination and analysis, definition of defectives and lot acceptance.
  • Book

    Philippine National Standard: Pasteurized crab meat 

    Bureau of Agriculture and Fisheries Standards - 2016 - Bureau of Agriculture and Fisheries Standards
    This PNS for pasteurized crab meat aims to provide a common understanding on the scope of the standard, product description, process description, essential composition and quality factors, food additives, contaminants, hygiene and handling, packaging and labeling, methods of sampling, examination and analysis, definition of defectives and lot acceptance.
  • Book

    Philippine National Standard: Live mangrove crab 

    Bureau of Agriculture and Fisheries Standards - 2016 - Bureau of Agriculture and Fisheries Standards
    This PNS for live mangrove crab aims to provide a common understanding on the scope of the standard, product description, process description, essential composition and quality factors, food additives, contaminants, hygiene and handling, packaging and labeling, methods of sampling, examination and analysis, definition of defectives and lot acceptance.
  • Book | Conference publication

    Resource enhancement and sustainable aquaculture practices in Southeast Asia: challenges in responsible production of aquatic species : proceedings of the international workshop on resource enhancement and sustainable aquaculture practices in Southeast Asia 2014 (RESA) 

    MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.) - 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    The conference was held in order to promote and augment regional initiatives on resource enhancement and sustainable aquaculture practices, and to contribute to poverty alleviation, livelihood and food security in Southeast Asia. The contributions of the selected participants during the conference which are contained in this volume are cited individually.
  • Conference paper

    SEAFDEC/AQD stock enhancement initiatives: release strategies 

    MJH Lebata-Ramos, EF Doyola-Solis, R Sibonga, J Sumbing, JB Abroguena, A Santillan & M Dimzon - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    The Aquaculture Department of the Southeast Asian Fisheries Development Center (SEAFDEC/AQD) started its Stock Enhancement Program more than a decade ago with the first stock enhancement initiative on the mud crab Scylla spp. funded by the European Commission. This was followed by another stock enhancement program in 2005 supported by the Government of Japan Trust Fund. In preparation for its implementation, a Regional Technical Consultation on Stock Enhancement of Species Under International Concern was convened in Iloilo City, Philippines in July 2005 to identify species for stock enhancement. During the meeting, seahorses Hippocampus spp., giant clam Tridacna gigas, abalone Haliotis asinina, and sea cucumbers Holothuria spp. were among the priority species for stock enhancement work.

    Stock enhancement, restocking and ranching are management approaches involving the release of wild or hatchery-bred organisms to enhance, conserve or restore fisheries. This paper reports SEAFDEC/AQD release activities and some of the release strategies that have been established for mud crabs, giant clams and abalone.
  • Conference paper

    Country status on sustainable aquaculture in Lao PDR 

    T Khonglaliane - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Capture fisheries and aquaculture in Lao PDR are based on water resource ecosystems which consist mainly of rivers and streams, hydropower and irrigation reservoirs, diversion weirs, small water bodies, flood plains and wet-season rice-fields. The total area of water resources for capture fisheries is believed to be more than 1.2 million ha. The estimated consumption of inland fish in Lao PDR is approximately 167,922 tonnes per year while consumption of other aquatic animals is estimated at 40,581 tonnes per year. Most of the consumption is from internal production (i.e. imports are of minor importance), so these figures represent approximate catches or yield from fisheries. These estimated yields are conservatively valued at almost US$150 million per year.

    The people of Lao PDR, especially in the rural communities that account for more than 75 per cent of the population, still depend upon the country's fish and other aquatic animals as their most reliable sources of animal protein. The estimate of actual fish consumption per capita (kg/capita/ year) of inland fish is 24.5 kg, while other aquatic animals account for about 4.1 kg and marine products around 0.4 kg, to make a total of 29 kg of fish and aquatic products consumed per capita per year.

    As aquaculture in Lao PDR expands, many forms of production systems are being developed, for example pond culture, communal ponds, rice-cum-fish culture and cage culture. Most fish culture systems in Lao PDR are small-scale. Such forms of production systems are divided into sub-categories depending on the nature and main activity of the producers. According to the Department of Livestock and Fisheries, aquaculture production in 2007 accounted for 54,750 tonnes in an area of more than 42,000 ha, including cage culture in the Mekong and some tributaries.

    There has been a significant increase in intensive tilapia production in recent years in Lao PDR (MRC Technical Paper No. 5 April 2002) based on tilapia cage culture in the Mekong river and irrigation reservoirs. In last two years, an enterprising farmer has established about 360 cages.

    Constraints in the large-scale development of tilapia cage culture are the lack of technical support (e.g. extension services) to the farmers and insufficient supply of advanced fingerlings. Morever, tilapia cage culture in the Mekong river system is perceived to be difficult to sustain because of environmental factors such as river flooding and strong currents during the rainy season and the lack of water during the dry season.
  • Conference paper

    Shrimp metabolism: The roles of lactate dehydrogenase (c31), glycogen phosphorylase (c34) and protein kinase (PK) as revealed by RNA interference 

    MVR Tare, H Kondo, I Hirono & MBB Maningas - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Energy metabolism is well-studied in vertebrate systems, providing insights on the genes and mechanisms involved in different pathways necessary for the survival of an organism. Yet, such studies are still lacking in invertebrate systems much more in shrimp. An earlier study has showed several contigs from the black tiger shrimp to be homologous to white spot syndrome virus (WSSV), a devastating pathogen in shrimp, including contig 31-WSSVORF82 (c31) and contig 34-WSSVORF21 (c34). This study aims to unveil the roles of three genes: c31, c34 and protein kinase (PK) in the shrimp system and its possible role in WSSV-infection. Rapid amplification of cDNA ends-polymerase chain reaction or RACE-PCR was used to obtain the full-length sequence of c31 and c34, followed by in vivo gene silencing using RNAi technology, and intramuscularly injecting dsRNA to WSSVchallenged Macrobrachium rosenbergii and Penaeus (Marsupenaeus) japonicus. Gene expression followed for healthy shrimps and dsRNA-treated shrimps.

    Mrc31 was revealed to be the enzyme lactase dehydrogenase (LDH), commonly released during tissue damage and is a marker for disease. The most parsimonious tree pictured Mrc31 to be sister clades to LDH of other shrimp species, Penaeus monodon and P. vannamei, supported with 100% and 72% bootstrap values, respectively. Mrc34 was highly homologous to the glycogen phosphorylase (GP) enzymes of other organisms including that of another shrimp, M. japonicus, bearing a bootstrap value of 99%. For PK, phylogenetic analysis revealed that the three open reading frames (ORFs) from P. monodon, M. rosenbergii and P. japonicus have 30% homology to WSSV-PK supported by a 98% bootstrap value. Mortality data from dsRNA-treated and WSSV-infected shrimps showed that treatment with dsRNA-LDH, GP and PK had significantly higher survival rates compared to that of the controls, Phosphate Buffered Saline (PBS) and Green Fluorescent Protein (GFP). Silencing the three genes in the shrimp has rendered some protective effect against the virus. Gene expression showed that all three genes are present in immune-related organs such as the gills, hepatopancreas and hemocyte. This study is the first to report the possible identities and functions of contigs 31, 34 and PK providing valuable data on the shrimp's genome.
  • Conference paper

    Current status of aquaculture in Singapore 

    NC Heng - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Singapore is a small country state with a demographic profile of over 5 million in population. With limited land for agricultural purposes and sea space available for fish farming, Singapore depends heavily on importation of fresh seafood. Even so, Singapore has a small but thriving and increasingly important food fish farming industry which accounts for about 6% of local food fish consumption.

    The main bulk of local food fish production comes from coastal farming in floating netcages along the northern coast of Singapore. Popular species of marine food fish cultured include seabass, pompano, groupers, mullets and milkfish. There are also a few land-based fish farms culturing species like tilapia, marble goby and snakehead.

    The ornamental fish farming industry is concentrated mainly in Agrotechnology Parks and there are about 75 fish farms producing ornamental fishes with an approximate value of $76.7 million that is exported to over 80 countries.

    The Agri-Food and Veterinary Authority of Singapore (AVA) is the national authority for aquaculture development in Singapore and manages aquaculture farms through the issuance of fish farming licenses. For marine food fish farms, the farm licensee has to abide by good farm management guidelines to maintain the farm in good condition and ensure that the farm does not engage in activities that would impact the farming environment. For land-based farms, there are also guidelines that address infrastructure layout, farming system and water treatment facilities. The latter requires that sedimentation ponds, reservoir ponds/tanks, supply/drainage systems and trade effluent treatment plant are included in the farm set-up.

    There are several challenges and issues faced by the aquaculture industry in Singapore. One of these is the consistent supply of good quality fish fry as farmers have to source for fish fry from overseas sources that may not be consistent or readily available.

    Issues of fish health and farm management are other challenges faced by our fish farms. These factors affect farm productivity and the sustainability of farming operations.

    The AVA has established the Marine Aquaculture Centre (MAC) on St John's Island to address the needs of aquaculture development for Singapore through development of fish reproduction and seed production as well as large-scale fish farming technology. At present, the fish reproduction technology research work involves closing the reproductive cycles of key marine food fish species and also fry production at a commercial scale level. Closing the reproductive cycle will help to reduce the reliance on imported fry. Good quality brooders are selected, maintained and bred to produce quality fry, which would translate to better growth performance and shorter culture period. This, together with good farm management practices, will optimize the usage of fish feeds during the culture cycle.

    To fill the gap in production and supply of good quality fish seeds for local fish farms, AVA shares information on hatchery technology development with local commercial hatcheries.

    The AVA collaborates with research institutes and local fish farms in the development of vaccines to boost the survival rate of fish fry and fingerlings. This will improve survivability, thus increase the production of the farms and reduce the reliance on prophylactic drugs that may have negative consequences from prolonged use.

    The AVA also renders technical assistance to the farmers to formulate viable production plans to improve production. By leveraging on the use of technology and good farm practices, such as implementation of fish health, fish nutrition and feeding protocols, it is possible to reduce production costs and improve productivity. The introduction of the Good Aquaculture Practice scheme for food fish farming will help improve the standards of the local aquaculture industry and sustainability through responsible management practices.
  • Conference paper

    First record of Laem-Singh virus in black tiger shrimp (Penaeus monodon) in the Philippines 

    CAM Cruz, PC dela Cruz, PCD Alcala, FGM Tagle, ES Santos, MD Santos & MBB Maningas - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Laem-Singh Virus (LSNV), a single-stranded RNA virus that causes growth retardation in Penaeus monodon, is also known as Monodon Slow-Growth Syndrome (MSGS) virus. Black Tiger shrimps afflicted with this virus exhibit unusual dark color, a weight gain of less than 0.1 g in 1 to 2 weeks, unusual yellow markings, bamboo-shaped abdominal markings and brittle antennae. It was first detected in Thailand and the virus quickly spread to neighboring Asian countries such as Malaysia and Singapore. The shrimp economy of countries where infections have occurred experienced losses in the export of live shrimps and broodstocks. An earlier study in 2009 reported that LSNV was not present in the Philippines. However, since no follow-up researches were done in the succeeding years, this study was conducted to detect the presence of virus in selected sites of Luzon. Results based on biased sampling method and RT-PCR data indicated that LSNV is indeed present in the country. This is further supported by DNA sequence data, showing 100% identity with LSNV India isolate. Phylogenetic analysis showed that the Philippine isolate clustered closely with other LSNV isolates. The outcome of this study might have implications in the current practices in the Philippine shrimp aquaculture industry.
  • Conference paper

    Growth and survival of nile tilapia (Oreochromis niloticus) juveniles fed diets with varying levels of irradiated chitosan 

    K Gonzales, MN Corpuz & MRR Romana-Eguia - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Chitin is a natural biopolymer and the second most abundant after cellulose. Chitosan, a derivative of chitin which is soluble in acidic aqueous media, is used in many applications like food, cosmetics, biomedical and pharmaceutical products. It is used in agriculture for enhancing growth in crops while in aquaculture, chitosan is believed to improve the immune response of fish to stress-inducing agents, thus enhancing survival and possibly growth. This preliminary study was conducted to investigate the effects of various concentrations of irradiated chitosan on the growth performance of Nile tilapia, O. niloticus. Fish was fed with a control diet and three formulated diets containing increasing levels of irradiated chitosan (10g, 20g and 50g kg-1). Juvenile O. niloticus was fed once daily for 21 days. The ration was based on 5% of the fish biomass. Tilapia fingerlings (n=30 per tank) of uniform size were randomly distributed in four experimental groups each with three replicates following a completely randomized design. Growth and food utilization parameters were measured. Specific growth rate (SGR), mean weight gain (MWG), mean length increment (MLI) and feed conversion ratio (FCR) were computed and analyzed using ANCOVA. Results from the feeding trials showed no significant difference (P>0.05) in the different performance parameters under the different fish feed treatments. MWG, MLG, SGR and FCR varied in the stocks fed different fish feed treatments but with no significant differences. The results also showed 45-62% survival ratio. These suggest that although there is no significant difference between treatments and control, irradiated chitosan-supplemented diets do not retard the growth of O. niloticus. Chitosan should be studied further to determine how it can improve the growth performance, feed utilization and immune response of Nile tilapia.
  • Conference paper

    Resource assessment of sea cucumber in northern Iloilo, central Philippines 

    PA Alpasan & RA Billones - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    A resource assessment of sea cucumber was conducted in six out of eight coastal towns in northern Iloilo, a fisheries rich area facing the Visayan Sea in the central Philippines. A yearlong assessment was conducted in 2012. Fishery dependent survey was done with the use of survey questionnaire translated into dialect. Six trained enumerators administered the questionnaires to 114 gatherers and 18 local traders. Fishery independent survey involving Belt Transect Method (BTM) for intertidal areas and Timed-Search Method (TSM) for subtidal areas were conducted in 21 GPS (Global Positioning System)-referenced sampling stations. Sample specimens were also collected and prepared for taxonomic identification. External morphology, internal structures (dissected samples) and spicule analysis were used in the identification.

    Fishery dependent survey showed that gleaning (40%) is the most dominant extraction method used. Various methods were also employed including the dangerous compressor diving and the destructive karas, a method using a rake-like device to scrape the sea bed. In terms of volume, the most heavily exploited sea cucumber belongs to the Stichopus groups. The trade of sea cucumber is dominated by island-based traders. Almost half of the traders are women, signifying that trading is a woman's domain as well. Derived monthly income from sea cucumber trade ranges from PhP 2,000-3,000 for gatherers and PhP 2,000-5,000 for the traders.

    Fishery independent survey resulted in the identification of six sea cucumber genera (Bohadschia, Holothuria, Paracaudina, Pseudocholochirus and Stichopus). Of the 32 species found belonging to the six genera, only 16 were identified up to the species level. Samples of unidentified specimen were sent to the University of the Philippines - Marine Science Institute (UP MSI) laboratory for molecular taxonomic identification. In terms of species count, the most dominant genera is the Holothuria with nine identified and seven unidentified species. H. impatiens is also the most dominant sea cucumber found in the area. Further, the recorded catch per unit effort (CPUE) for fishery-independent survey is 3-4 pcs/diver/hr.

    The resource assessment showed that the trade of sea cucumber is dictated by economic value rather than by ecological abundance. While the scale and extent of sea cucumber fishery in northern Iloilo is small-scale and island based, the study highlights the need for trade regulation and stock enhancement of heavily exploited species as extraction affects the ecological distribution of sea cucumber stocks in the area.
  • Conference paper

    Updates on the seed production of mud crab 

    ET Quinitio, FD Parado-Estepa, JJ Huervana & MR Burlas - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Widespread interest in mud crab species is increasing because these are highly prized both in domestic and export markets. Among the three mud crab species commonly found in the Philippines, Scylla serrata, S. olivacea, and S. tranquebarica, S. serrata is preferred by farmers because it is larger and less aggressive than the other species. Likewise, S. serrata is the most widely distributed species in the Indo-west Pacific region.

    Hatchery-produced seedstock are presently used by some crab farmers in their grow-out operations. In the hatchery phase, feeding mud crab larvae with shrimp formulated diets and natural food was found to reduce the occurrence of molt death syndrome, one of the major problems in seed production. Larvae given 25% formulated diet (FD) + 75% natural food (NF; rotifers and Artemia) and 50% FD + 50% NF showed better performance than those larvae fed 100% FD, 100% NF and 75% FD + 25% NF indicating that usage of natural food, especially the expensive Artemia, can be reduced. Since the early crab instar (C) produced in the hatchery need to be grown further before stocking in grow-out ponds, two phases of nursery culture have been developed. C1-2 are grown to 1.5-2.0 cm carapace width (CW) size in the first phase and further grown to 3.0-4.0 cm CW in the second phase. Nursery rearing is done in net cages installed in ponds for easy retrieval. A combination of mussel or trash fish and formulated diet is used as feed.

    Domestication of the mud crab S. serrata as a prerequisite to selective breeding has been done at SEAFDEC/AQD. Likewise, defining criteria for the determination of quality of newly hatched zoeae for stocking in the hatchery was initiated. Newly hatched zoeae were subjected to starvation and stress test using formalin. Starvation failed to elicit responses that were significantly different between the good and poor quality larvae hence it is not suitable for larval quality evaluation. Based on three-year data, the formalin stress test gave mean cumulative mortalities of 2.38±0.32, 8.24±0.88, 20±1.58 in good quality larvae, and 43.74±2.39 while 22.93±4.19, 63.68±7.17, 84.29±3.88 and 97.65±1.06 for poor quality larvae at 0 (control), 20, 30 and 40 ppm formalin, respectively. As formalin level increased, cumulative larval mortality also increased regardless of the quality of the larvae. Formalin stress test proved to be a reliable method to determine whether a batch of newly hatched zoeae was of good or poor quality.
  • Conference paper

    Responsible shrimp culture through ecological approach 

    EA Tendencia - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Aquaculture is the fastest food-producing sector. It is the farming of aquatic organisms, like crustaceans, fish, molluscs and plants. Culture of aquatic organisms, particularly shrimps, is usually done in earthen ponds with some intervention in the rearing process to enhance production. Some of these processes to increase production are pond preparation, regular stocking, feeding, and the use of probiotics and other chemicals to improve soil, water quality, shrimp growth and immunity against diseases. The long range effect of the use of probiotics and other chemicals on the environment and on shrimps is unknown. Despite the various inputs, diseases continue to plague the industry, which could be due to the deteriorating environmental conditions that cause stress in shrimps thus making them susceptible to infection. Furthermore, chemicals and nutrients from aquaculture may affect biodiversity of the receiving environment.

    Responsible aquaculture is a sustainable development approach that meets the needs of the present generation without compromising the ability of future generations to meet their own needs. There should be a good balance between satisfying human needs while maintaining or enhancing the quality of the environment and conserving natural resources. Human health or food safety as well as economic efficiency and/or livelihood opportunities should be taken into consideration. Responsible shrimp culture through ecological approaches to improve environmental conditions is herewith described.

    Ecological approaches recognize the interactions between an aquaculture farm and the external environment, including environmental resources and local communities. Ecological approaches to improve environmental conditions identified from cross sectional, longitudinal and tank studies may be classified into culture systems and phases of pond production: pond preparation and rearing. Two culture systems are identified to improve water quality: 1) the use of the greenwater system, and 2) the presence of mangrove in the receiving environment. Among the pond preparation practices, sludge removal, crack drying of pond, and liming were identified. Toxic substances as well as organic matter, which provide nutrients necessary for the growth of microorganisms, are removed during sludge removal and crack drying of the pond sediment. Liming to pH 11 kills most harmful microorganisms including the white spot syndrome virus; it also kills unwanted species in the shrimp pond like fish and crabs. During the rearing phase, abundant supply of natural food, low stocking density, less input, addition of fermented Avicennia alba leaves, use of molasses and rest periods are some of the important farming practices that reduce risk of disease occurrence. Other reported practices are crop rotation, biofloc technology, aquaponics, and integrated multi trophic aquaculture.
  • Conference paper

    Marine biodiversity at the SEAFDEC/AQD research stations in Iloilo and Guimaras, Philippines 

    TU Bagarinao - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Species inventories were recently made in and around the research stations of the SEAFDEC Aquaculture Department to facilitate subsequent monitoring. AQD s Tigbauan Main Station (TMS, since 1973) faces the deep open waters of the Panay Gulf and Sulu Sea and is flanked by densely populated fishing villages operating nearshore fish corrals, gillnets, longlines, and beach seines. In 2013 2014, sampling at the sand-gravel intertidal and monitoring of the catch of the various gears showed at least 579 species from 213 families, including 252 species of fishes, 228 mollusks, 48 crustaceans, 12 cnidarians, 9 echinoderms, 16 seaweeds, sea turtles, and sea snakes inhabiting the nearshore areas off TMS. Any adverse effect of the TMS hatcheries and laboratories is difficult to discern on top of the continuous intense fishing and habitat disturbance. AQD s Igang Marine Station (IMS, since 1980) is in a cove under the rocky cliffs of southern Guimaras, behind several islands facing the Panay Gulf and Sulu Sea. IMS includes 40 ha of seagrass beds and sandflats around five rocky islets and two 6 12 m deep basins where broodstock and growout cages are moored. IMS is flanked by many fish corrals operated by fishers who live in villages in nearby coves. Fishers on outrigger boats also use gillnets and spears, and others glean for mollusks and echinoderms inside IMS. In 2011 2012, some 786 species in 261 families were collected or photographed at IMS, including 74 species of fishes, 40 crustaceans, 391 mollusks, 44 echinoderms, 87 cnidarians, 47 poriferans, 24 ascidians, and 12 bryozoans, and sea snakes living among 48 seaweeds and 4 seagrasses. Biodiversity at IMS seems high despite 35 years of operation of the fish cages and the continuous fishing, gleaning, and boating by the locals. Several species of filter-feeding invertebrates grew on the cage nets and platforms but were not found in the natural habitats. The cages provide additional attachment surfaces for many species; these biofoulants presumably reduce water flow into the cages but they also remove nutrients and particulate wastes and help maintain good water quality. Nevertheless, siltation is evident under the cliffs inside the cove, and the sandflats may be expanding over the seagrass beds. AQD s 16ha Dumangas Brackishwater Station (DBS, since 1998) is flanked by freshwater Talaugis River, by hundreds of hectares of mangrove-derived fish ponds, and by Pulao Creek and an extensive mudflat with fringing mangroves at the northeastern end of Iloilo Strait. In 2009 2010, 16 ponds with water areas from 0.5 to 0.9 ha were sampled during harvest of the experimental crops. At least 90 species of non-crop fishes lived in the DBS ponds, along with 35 crustaceans, 60 mollusks, three echinoderms, two cnidarians, and a water snake. The snails Cerithideopsilla spp., Cerithium coralium, and Batillaria spp. were very abundant in the ponds. Almost all the same species in the ponds, plus many others, were found in the adjoining fringing mangroves with ~10 species of trees. The ponds serve as proxy for mangrove lagoons that harbor the young of migratory fishes as well as all life stages of resident species. Several non-crop species inside the IMS cages and the DBS ponds are harvested by the pond workers and contribute to nutrition and income. Aquaculture farms should be managed for high biodiversity to ensure sustainability. Ways are suggested for SEAFDEC/AQD to do so at its aquaculture research stations.
  • Conference paper

    Is small-hold tropical aquaculture in a genetic plunge towards extinction? 

    RW Doyle - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Tropical shrimp aquaculture is in a disease-induced crisis of lost production. The response to this crisis currently focuses on microbiology and pathology, quarantine, and transboundary transfer of shrimp. The crisis also involves an interaction between shrimp genetics and various human interests including protection of intellectual property. Breeders of high-quality strains generally employ (and are encouraged to employ) some form of breeder lock that generates inbreeding when broodstocks are copied . Smaller hatcheries sell these copied, inbred shrimp to farmers, who thereby increase the likelihood of losing their crops to disease. The joint behavior of breeders, hatcheries and farmers causes inbreeding to accumulate in tropical regions.

    The depressive effect of inbreeding on disease resistance is exceptionally strong in shrimp, as shown in a re-analysis of published field and experimental data. Inbreeding increases the severity and frequency of disease through a variety of mechanisms. We have relatively few, marker-based estimates of accumulated inbreeding in any non-pedigreed shrimp aquaculture system. Simulation shows, however, that locked post larvae (PLs) can be distinguished from copies in broodstocks and farm ponds, given appropriate analysis of genetic markers.

    Culture of stocks certified to be free of specified pathogens (specific pathogen free or SPF stocks) is strongly recommended and only SPF stocks can now be legally imported into most jurisdictions. These recommendations are appropriate, beneficial and necessary. But insofar as they increase the commercial value of proprietary genetic strains, such regulations may also increase the likelihood of copying, and thus inbreeding at farm level and ever-increasing susceptibility to disease and climate stress (Doyle, 2014a).

    The intellectual property value of disease-resistant strains will be extremely high and intellectual property rights are fundamental to science-based economic innovation. Breeders will, and must, continue to protect their genetic improvement programs with genetic locks, especially in regions where judicial sanctions are ineffective. The regulatory objective should be to encourage biosecurity and genetic progress while discouraging copying and consequent inbreeding.

    The current consensus that inbreeding is unimportant may therefore be out of date. Inbreeding may be amplifying the severity of diseases (including the major current threats: white spot syndrome virus or WSSV, infectious hypodermal and hematopoietic necrosis virus or IHHNV and early mortality syndrome or EMS (acute hepatopancreatic necrosis disease or AHPND). Continuing to ignore the interaction between inbreeding and disease may become a fatal error for tropical shrimp aquaculture.
  • Conference paper

    Social preparations towards community-based approach to stock enhancement in Sagay Marine Reserve, Philippines 

    ND Salayo, RJG Castel, DHM Tormon, RT Barrido, MFJ Nievales & T Azuma - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Stock enhancement involves a set of management approaches which include the release of hatchery-produced aquatic organisms to enhance or restore fisheries. Stock enhancement of various species has a long history in developed countries and it showed that releases have the potential to yield substantial benefits for various fishery stakeholders. While the biological objectives of stock enhancement were often successfully achieved in most of these enhancement initiatives, some results showed that actual social gains in terms of yields, distribution of benefits and institutional sustainability are often inconclusive. The high cost of stocking accrues to the government which means these are supported by public funds. Meanwhile, benefits are dissipated across various stakeholders, some of them did not at all contribute and participate in the stocking program. In such government-initiated and publicly-funded stock enhancement programs, the lack of sense of stewardship among direct fishery stakeholders was observed to have contributed to a vicious cycle of excessive extraction of fishery resources for individual economic benefits.

    Developing countries such as the Philippines would be confronted by budgetary limitations if it has to adopt the stocking strategies applied in developed countries. Thus, with reference to the success of co-management approaches for managing fishery resources in the Philippines, a community-based strategy for enhancement of fishery stocks was explored. SEAFDEC/AQD, with support from the Government of Japan Trust Fund, initiated a community-based approach to stock enhancement in Molocaboc, an island barangay or village within the Sagay Marine Reserve (SMR). The initiative aims to ensure that its goals and strategies are within the social milieu of local stakeholders, i.e. fisherfolks are without financial assets to contribute or pay for the enhancement of the fishery and stock enhancement is often not a priority approach to address fishery resource depletion for most local governments. However, the social assets of fishing communities could be explored to implement stock enhancement. This paper describes the social preparation executed from 2007 to 2011 in order to orient a fishing community such as Molocaboc towards a successful enhancement of overfished species. Initially, the project focused on donkey s ear abalone Haliotis asinina to provide an example for other species. Abalone or kapinan in the vernacular is one of the over-extracted fishery resources in Sagay City. It is one of the high-priced catch among fishers in coastal communities in the Philippines. High buying prices compared with other fish catch motivated small-scale fishers to target abalones and caused its overfishing.
  • Conference paper

    Current status of sustainable aquaculture in Cambodia 

    O Lang - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    In Cambodia, the extension of technologies in fish aquaculture is a vital activity that contributes to improving the daily livelihood of the rural poor farmer communities. Technology extension was introduced since 1994 through a project of the Asian Institute of Technology (AIT) and other local non-government organizations (NGOs) or international organizations (IOs) in some fish production deficient provinces. Prior to the introduction of such activities, wild fish were still abundant. From then to date, aquaculture extension is being done under the Freshwater Aquaculture Improvement and Extension Project Phase II of Japan International Cooperation Agency (FAIEXII-JICA), and Department for International Development/Danish International Development Agency (DFID/DANIDA) Projects.

    Recently, aquaculture extension is one of the national policies under the National Rectangular Strategy Policies of the Government. There are several different freshwater aquaculture systems including floating cage/pen culture, earthen pond culture and rice-fish culture, and other fish culture in smallwater bodies or aquaculture-based fisheries in Cambodia as practiced in over 20 provinces and cities, with less development focused on coastal aquaculture.

    Freshwater aquaculture production continued to grow over the past two decades and increased from 1,610 tons in 1984 to 20,760 tons in 2004, representing 11.9 times increase or growth of 16.3% per year This further increased to 74,000 tons in 2012, representing 11.9 times increase or a growth rate of 15% per year. However, aquaculture development in Cambodia is in its infancy stage compared to other countries in the region. It has encountered some problems and constraints during its development, which include inadequate and unreliable supply of good quality seed; lack of capital, fund or credit for aquaculture investment; inadequate knowledge of aquaculture technology; inadequate manpower for aquaculture extension service; and climate change, which have adversely impacted aquaculture development in Cambodia.

    In order to achieve the goal of supplying the nation s future fishery requirements through aquaculture, the Cambodia Fisheries Administration (FiA) published the Strategic Planning Framework (SPF) for Fisheries (2010-2019). Within this framework, the scenarios for future fish demand-supply for 2019 suggest that aquaculture production will increase by 15% per year to 185,000 tons by the end of 2019.
  • Conference paper

    Status of resource enhancement and sustainable aquaculture practices in Japan 

    K Okuzawa, T Takebe, N Hirai & K Ikuta - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    Contrary to the rapid increase in the world aquaculture production, fish production in Japan has been decreasing slightly due to the decreasing trend in seafood consumption of Japanese. Aquaculture production is approximately 20% in terms of yield, and 30% in terms of market value, of the country s total fisheries production. In Japan, about 80 species are targeted for release for sea ranching and resource enhancement purposes. The local governments (prefectures) are the main driving force in resource enhancement programs. Chum salmon, Oncorhynchus keta, and scallop Mizuhopecten yessoensisis are examples of successful resource enhancement in Japan. Japanese flounder, Paralichthys olivaceus, and red seabream, Pagrus major, represent intensely released fish species in Japan, and around 10% of the total catch of those species are estimated as released fish. The low price of products and increasing costs of production, such as costs of fuel and fish meal, are the major pressing issues in coastal fisheries and aquaculture in Japan. For aquaculture, the guarantee of food safety, minimization of environmental impact, and management of natural stock populations are highly necessary in order to achieve the sustainability of the industry. For resource enhancement, budget constraint is the major issue, and possible impact on natural stocks caused by released fish should also be considered. The Government of Japan (GOJ) is implementing some measures to rectify unstable business practices of aquaculture and to improve production techniques in aquaculture. For resource enhancement, the GOJ encourages cooperation among local governments (prefectures) for seed production and release of certain targeted species in order to reduce the cost and improve the efficiency of stock enhancement. In Japan, traditionally, the purpose for release was mainly sea ranching, namely harvesting all released animals. Nowadays, actual resource enhancement, i.e. the integrated release program including resource management and development of suitable nursery for released fish, is encouraged by the government. The evaluation and counter measures for the negative impact of stocked fish on genetic diversity of the wild population are also implemented. Recently, marked progress was achieved in seed production technologies of two important tropical fish species, namely coral trout, Plectropomus leopardus, and humphead wrasse, Cheilinus undulatus. These technologies are expected to contribute to the advancement of the aquaculture industry in the South East Asian region.
  • Conference paper

    Community-based shrimp stock enhancement for coastal socio-ecological restoration in the Philippines 

    J Altamirano, H Kurokura, ND Salayo, D Baticados, JG Suyo & S Ishikawa - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    The reality of declining quality of coastal areas has been evident for many developing countries, especially in Southeast Asia. In the Philippines, rural coastal zones and estuaries are now being characterized by declining wild fisheries resources and degrading environment. This paper presents, as an example, the typical rural coastal towns of New Washington and Batan in Aklan province, Philippines and showcases how the concept of shrimp stock enhancement can provide incentives to restore the environment and provide sustainable fishing livelihood in the area.

    The New Washington-Batan Estuary in northeast Panay Island, Philippines was a productive fishing ground that has been in a state of degenerating brackishwater fisheries and estuarine environment. Average daily catch composed of various species decreased from 24 kg in 1970s to 0.7 kg at present. Shrimp fisheries, the most important livelihood, declined in quality and quantity. The highly-priced and once very abundant tiger shrimp Penaeus monodon was replaced with smaller-sized and lower-priced species like the Metapenaeus ensis. These can be attributed to the conversion of 76% of mangroves to culture ponds in the past 50 years and more than 400% increase in fishing gears since the 1990s. The need to reduce fishing structures and rehabilitate mangroves is evident. However, these drastic changes directly affect fishers livelihood. This paper explores the prospects of P. monodon stock enhancement as positive reinforcement for the estuary s rehabilitation. Number of gears per fisher may have to be reduced but shrimp catches will be relatively high-priced. Simulations with additional tiger shrimp caught due to stock enhancement show that fishers can increase income by more than 4 times from their current PhP 34 gear-1 day-1. Campaigns on the importance of mangrove especially as shrimp habitat can encourage local communities to reforest the estuary especially in abandoned ponds. With effective management, law enforcement, and sustained support from different sectors, shrimp stock enhancement can be a positive strategy in estuarine rehabilitation and livelihood sustainability in the New Washington-Batan Estuary.
  • Conference paper

    Abalone aquaculture for stock enhancement and community livelihood project in northern Palawan, Philippines 

    BJ Gonzales - In MRR Romana-Eguia, FD Parado-Estepa, ND Salayo & MJH Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production … International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA), 2015 - Aquaculture Department, Southeast Asian Fisheries Development Center
    One of the interventions to feed the poorest of the poor fisheries sector in the country is the provision of livelihood in the form of mariculture of high value marine species. In the Philippines, livelihood in rural areas is largely linked to resource depletion, hence it is wise not only to provide livelihood to the community but also to encourage them to conserve and enhance the resources. As part of the revised R&D program, the Western Philippines University partnered with NGO and existing projects to embark on a community-based environment-concerned livelihood project, using hatchery bred abalone, although top shell was also considered for stock enhancement. This is in an on-going project thus, preliminary phases such as abalone production and cage-based grow-out as well as subsequent project plans will be discussed. The objectives of this study were to: (a) share the implementing experiences in this project, (b) identify success and failure drivers of the project, (c) explain the conceptual framework for the MPA-based stock enhancement to be used in this project, and (d) give recommendations to improve the implementation and ensure the success of the project.

    The following activities have thus far been conducted: (a) development of criteria for cage micro-site selection; (b) writing of proposal and provision of financial assistance for hatchery juvenile production through a partnership MOA; (c) presentation of site survey results to beneficiaries and stake holders; (d) conduct of trainings on abalone grow out culture to POs; (e) development and improvement of training module; (f) signing of conservation agreement; (g) giving of cage materials and juveniles to people s organizations; (h) on site coaching; and (i) partial monitoring. The next activities include improvement in juvenile production, conduct of researches on abalone nutrition, and development of market and value chain flow analysis. The conceptual framework for community-managed stock enhancement will follow that of the Department of Environment and Natural Resources-ICRMP, of which the stock enhancement project is anchored on the management of marine protected areas or MPAs.

    The steps in all the activities were documented and while the project was in progress, performance of the participants in training were measured, the training module was improved, the training approaches were revised according to needs, and the growth and survival of juvenile abalone were monitored. The problems identified were low production of juveniles, insufficient food for grow-out, political squabbles, social preparation, and delay in implementation schedule. Recommendations to improve or resolve the problems encountered were also presented in this paper.

View more